Геометрія

Рух

Симетрія відносно точки

Нехай O — фіксована точка, X — довільна точка площини. Відкладемо на продовженні відрізка OX за точку O відрізок , що дорівнює OX.
Точка називається симетричною точці X відносно точки O(див. рисунок).

Очевидно, що точка, симетрична , є точка X.
Перетворення фігури F у фігуру , при якому кожна її точка X фігури F переходить у точку , симетричну відносно точки O, називається перетворенням симетрії відносно точкиO.
Фігури F і називаються симетричними відносно точкиO (див. рисунок).

Якщо перетворення симетрії відносно точки O переводить фігуру F у себе, то фігура F називається центрально-симетричною, а точка O — її центром симетрії. Наприклад, точка перетину діагоналей паралелограма є його центром симетрії (рисунок нижче зліва). Центр кола є його центром симетрії (рисунок справа).

Теорема. Перетворення симетрії відносно точки є рухом.





Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.