Геометрія - Великий довідник школяра - 2019

Кути, пов’язані з колом
Пропорційність відрізків хорд і січних кола

Теорема 1. Якщо хорди AB і CD кола перетинаються в точці S, то (рисунок 1).

Теорема 2. Якщо з точки P до кола проведені дві січні, що перетинають коло відповідно в точках A, B, C, D, то (рисунок 2).

Тобто добуток січної, проведеної до кола з даної точки на її зовнішню частину, є число незмінне.

Теорема 3. Якщо з точки P до кола проведені дотична, яка проходить через точку дотику A, і січна, яка перетинає коло в точках B і C, то (рисунок 3).

Рис. 1

  Рис. 2  Рис. 3

Тобто для січної і дотичної, що проведені до кола з однієї точки, квадрат дотичної дорівнює добутку січної на її зовнішню частину.

Теорема 4. Хорди, що з’єднують кінці паралельних хорд, рівні.

Вписані й описані чотирикутники

Теорема 1. Нав­коло чотирикутника можна описати коло тоді й тільки тоді, коли сума його протилежних кутів дорівнює .

На рисунку .

Із цього випливає, що коло можна описати навколо прямокутника (рисунок нижче зліва), зокрема квадрата (рисунок справа), його центром буде точка перетину його діагоналей. Радіус — половина діагоналі.

Коло можна описати навколо трапеції тоді й тільки тоді, коли вона є рівнобічною (див. рисунок). Центром кола є точка перетину середніх перпендикулярів до сторін. Навколо паралелограма та трапеції загального виду описати коло не можна. (Зокрема, навколо ромба не можна описати коло.)

Теорема 2. Чотирикутник тоді й тільки тоді можна описати навколо кола, якщо суми його протилежних сторін дорівнюють одна ­одній.

На рисунку .

Отже, коло можна вписати в ромб (зокрема у квадрат), але не можна в прямокутник або паралелограм загального виду.

Центр кола, вписаного в ромб, є точкою перетину діагоналей (рисунок нижче зліва). Радіус кола дорівнює половині висоти ромба, а у квадраті — половині сторони (рисунок справа).

Зверніть увагу: радіус вписаного в ромб кола (ON) — це висота прямокутного трикутника BOC, яка проведена з вершини прямого кута і має всі властивості висоти прямокутного трикутника, що проведена з вершини прямого кута.

Теорема 3. Трапецію тоді й тільки тоді можна описати навколо кола, коли сума її основ дорівнює сумі бічних сторін (рисунок нижче зліва). Центр цього кола — точка перетину бісектрис кутів трапеції. Радіус дорівнює половині висоти трапеції. У випадку рівнобічної трапеції центр вписаного кола лежить на середині висоти трапеції, яка проходить через середини основ (рисунок справа). Бічна сторона трапеції у цьому випадку дорівнює її середній лінії.





Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити