Геометрія

Тіла обертання

Конус

Круговим конусом називається тіло, яке складається з круга — основи конуса, точки, яка не лежить у площині цього круга, — вершини конуса і всіх відрізків, що сполучають вершину конуса з точками основи. Відрізки, що сполучають вершину конуса з точками кола основи, називаються твірними конуса.
Конус називається прямим (далі просто «конус»), якщо пряма, що сполучає вершини конуса з центром основи, перпендикулярна до площини основи.
Прямий круговий конус можна розглядати як тіло, утворене в результаті обертання ­прямокутного трикутника навколо його катета як осі.
Висота конуса — перпендикуляр, опущений із його вершини на площину основи.
Віссю прямого кругового конуса називається пряма, яка містить його висоту.
Зверніть увагу на рисунок нижче. Так звані «контурні твірні» SA i SB є дотичними до еліпса, який зображує основу конуса, точки A і B не є кінцями великої осі еліпса. Переріз конуса площиною, яка проходить через його вершину, — рівнобедрений трикутник, у якого бічні сторони є твірними конуса, а основою є хорда основи.

Розглянемо переріз CSD. Він перетинає основу конуса по хорді CD.
Хорду CD видно з центра основи під кутом COD, а з вершини конуса — під кутом CSD.
Сам переріз — рівнобедрений з основою CD, де твірні конуса. Його ортогональною проекцією на площину основи конуса є рівнобедрений з основою CD і . Відрізок OK є бісектрисою, медіаною, висотою , відстанню від точки O до хорди CD. Відрізок SK є бісектрисою, медіаною, висотою та відстанню від вершини конуса S до хорди CD. є лінійним кутом двогранного кута між площиною перерізу й площиною основи. Отже, , — кути нахилу твірної конуса до його основи.
Площа бічної поверхні конуса обчислюється за формулою , де Sосн — площа основи, — кут нахилу твірної конуса до його основи.





Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.