Геометрія - Великий довідник школяра - 2019

Тіла обертання
Конус

Круговим конусом називається тіло, яке складається з круга — основи конуса, точки, яка не лежить у площині цього круга, — вершини конуса і всіх відрізків, що сполучають вершину конуса з точками основи. Відрізки, що сполучають вершину конуса з точками кола основи, називаються твірними конуса.

Конус називається прямим (далі просто «конус»), якщо пряма, що сполучає вершини конуса з центром основи, перпендикулярна до площини основи.

Прямий круговий конус можна розглядати як тіло, утворене в результаті обертання ­прямокутного трикутника навколо його катета як осі.

Висота конуса — перпендикуляр, опущений із його вершини на площину основи.

Віссю прямого кругового конуса називається пряма, яка містить його висоту.

Зверніть увагу на рисунок нижче. Так звані «контурні твірні» SA i SB є дотичними до еліпса, який зображує основу конуса, точки A і B не є кінцями великої осі еліпса. Переріз конуса площиною, яка проходить через його вершину, — рівнобедрений трикутник, у якого бічні сторони є твірними конуса, а основою є хорда основи.

Розглянемо переріз CSD. Він перетинає основу конуса по хорді CD.

Хорду CD видно з центра основи під кутом COD, а з вершини конуса — під кутом CSD.

Сам переріз — рівнобедрений з основою CD, де твірні конуса. Його ортогональною проекцією на площину основи конуса є рівнобедрений з основою CD і . Відрізок OK є бісектрисою, медіаною, висотою , відстанню від точки O до хорди CD. Відрізок SK є бісектрисою, медіаною, висотою та відстанню від вершини конуса S до хорди CD. є лінійним кутом двогранного кута між площиною перерізу й площиною основи. Отже, , — кути нахилу твірної конуса до його основи.

Площа бічної поверхні конуса обчислюється за формулою , де Sосн — площа основи, — кут нахилу твірної конуса до його основи.





Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити