Матеріали для Нової української школи 1 клас - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Математика - Алгебра

Раціональні числа

Координатна площина

Проведемо дві перпендикулярні координатні прямі, які перетинаються в початку їх відліку — точці О. Ці прямі називаються осями координат. Горизон­тальну пряму називають віссю абсцис і позначають Ox, вертикальну — віссю ординат і позначають Oy. Точку О називають початком координат. Ці координатні прямі утворюють декартову прямо­кутну систему координат. Пло­щи­на, на якій задана прямокутна система координат, називається координатною площиною. Через будь-яку точку А координатної площини можна провести прямі, перпендикулярні до осей Ox і Oy.
Нехай ці прямі перетнуть відповідно вісь абсцис — у точці з координатою а, а вісь ординат — у точці з координатою b.
Пара чисел (а, b) визначає положення точки А на координатній площині й називається її координатами. Позначають А(а, b). Число а називається абсцисою точки А, число b — її ординатою. Зверніть увагу: має значення, в якому порядку записані числа а і b. Точка В(b; а) не збігається з А(а; b).
Якщо точка лежить на осі абсцис, то її ордината дорівнює 0; якщо точка лежить на осі ординат, то її абсциса дорівнює нулю. Початок координат — О(0; 0).
Осі координат розбивають площину на 4 частини, які називаються координатними чвертями. Нумерація чвертей, знаки координат у кожній чверті, а також приклади точок з їх координатами показані на рисунку.

Таким чином, щоб побудувати, наприклад, точку М(k; р), треба поставити олівець в О(0; 0), потім пересунутися по осі абсцис на одиничних відрізків праворуч (якщо ) або ліворуч (якщо ). Від отриманої точки на осі абсцис треба рухатись угору на одиничних відрізків (якщо ) або униз (якщо ).








загрузка...

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами. Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посилання на сайт, будьте вдячними ми затратили багато зусиль щоб привести інформацію у зручний вигляд.

© 2008-2019 Всі права на дизайн сайту належать С.Є.А.