Математика - Алгебра

Многочлен

Формули скороченого множення

формула різниці квадратів.
Добуток різниці двох виразів і їх суми дорівнює різниці квадратів цих виразів.
формула квадрата суми.
Квадрат суми двох виразів дорівнює квадрату першого виразу плюс подвоєний добуток цих виразів і плюс квадрат другого виразу.
формула квадрата різниці.
Квадрат різниці двох виразів дорівнює квадрату першого виразу мінус подвоєний добуток цих виразів і плюс квадрат другого ­виразу.
формула куба суми.
Куб суми двох виразів дорівнює кубу першого виразу плюс потроєний добуток квадрата першого виразу і другого плюс потроєний добуток першого виразу і квадрата другого плюс куб другого виразу.
формула куба різниці. (Читається аналогічно попе­редній формулі.)
формула суми кубів.
Сума кубів двох виразів дорівнює добутку суми цих виразів і неповного квадрата їх ­різниці.
формула різниці кубів.
Різниця кубів двох виразів дорівнює добутку різниці цих виразів і неповного квадрата їх суми.
Формули скороченого множення застосовуються для тотожних перетворень, зокрема для розкладання многочленів на множники.
Приклади
1) Спростити вирази:
а)
;
б)

.
2) Розв’язати рівняння:
а) ,
,
,
, ;
б) ,
,
або ,
або .
3) Розкласти на множники:
а) ;
б) ;
в)


.
4) Знайти найменше значення виразу:

.
Враховуючи, що для будь-яких значень х, одержуємо, що для будь-яких значень х. Найменше значення дорівнює 0, якщо . Отже, найменше значення дорівнює 2 при .





Відвідайте наш новий сайт - Матеріали для Нової української школи 1 клас - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами. Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посилання на сайт, будьте вдячними ми затратили багато зусиль щоб привести інформацію у зручний вигляд.

© 2008-2019 Всі права на дизайн сайту належать С.Є.А.