Методичний супровід для учителя до видання «Математика. 1 клас. Навчальний зошит. У 4 частинах. Частина 1» С. О. Скворцова - 2017

ПЕРЕДМОВА

МЕТОДИЧНІ РЕКОМЕНДАЦІЇ ЩОДО ПРОЕКТУВАННЯ УРОКІВ

У пропонованих матеріалах до кожного уроку визначено загальну мету, яка реалізується через систему уроків, і запропоновано дидактичну задачу, яка розв’язується на кожному окремому уроці й спрямована на досягнення загальної мети.

Математичний зміст створює можливості для розвитку пізнавальних процесів молодших школярів, тому, зважаючи на зміст навчання, для конкретного уроку визначається й розвивальна задача. Здебільшого ця задача стосується розвитку логічного мислення учнів шляхом формування прийомів розумової діяльності: аналізу, синтезу, порівняння, узагальнення, абстракції і конкретизації, а також через розв’язування задач з логічним навантаженням (ці задачі пропонуються вчителем за наявності часу й виходячи з пізнавальних потреб учнів). Пропонований навчальний зміст створює умови для постійного виконання учнями розумових операцій, для збагачення їхнього словникового запасу математичною термінологією, що позитивно впливає на розвиток математичного мовлення.

Виховна задача в основному стосується формування пізнавального інтересу до вивчення математики та розвитку таких якостей особистості, як охайність, товариськість, доброзичливість тощо. Зрозуміло, що вчитель, враховуючи потреби учнів класу, конкретні умови навчання, коригуватиме виховну задачу.

Здебільшого в початковій школі використовують комбінований урок. Структура комбінованого уроку, запропонована в даному посібнику, відповідає структурі навчальної діяльності та містить такі етапи: І. Мотивація навчально-пізнавальної діяльності учнів; ІІ. Актуалізація опорних знань і способів дії; ІІІ. Формування нових знань і способів дії; IV. Закріплення вивченого. Формування вмінь і навичок; V. Рефлексія навчально-пізнавальної діяльності учнів.

На етапі мотивації навчально-пізнавальної діяльності важливо викликати зацікавленість учнів в опануванні нового змісту, спонукати дитину до активної роботи. У посібнику наведено невеличкі бесіди (або тези) мотиваційного характеру, які мають закінчитися повідомленням учителя про тему та задачі уроку.

Зміст етапу актуалізації опорних знань і способів дії полягає в підготовці учнів до сприйняття нової інформації, для чого доцільно актуалізувати ті знання та способи дії, які є базою для засвоєння нового навчального матеріалу. На цьому етапі доцільно використовувати такі види роботи: зорові, графічні, математичні диктанти, «геометричні хвилинки», усне опитування, усну лічбу тощо.

З метою розвитку в шестирічних дітей уваги, сприймання, запам’ятовування корисно використовувати саме зорові диктанти. Перед проведенням зорових диктантів, учитель має проінструктувати учнів таким чином: «Уважно розгляньте подані фігури, зверніть увагу на їх форму, колір, розмір; запам’ятайте послідовність фігур; після того як ці фігури будуть прикриті, вам слід відтворити їх у поданій послідовності». Учні розглядають геометричні фігури, усно описують їх, а потім по пам’яті викладають на парті фігури в поданому порядку. Перевірка здійснюється через зіставлення одержаних учнями послідовностей із поданою на дошці. Послідовність продовжуємо на дошці або на наборному полотні.

Етап формування нових знань і способів дії передбачає створення проблемної ситуації, її розв’язання, формулювання орієнтувальної основи дії, первинне закріплення в матеріалізованій формі та у формі виконання навчальних дій із коментарем. Наступне опрацювання дії відбувається на етапі закріплення вивченого та формування вмінь і навичок, який до того ж передбачає безперервне повторення вивченого раніше.

На заключному етапі уроку підбивається підсумок уроку, організується рефлексія діяльності, а головне — визначається внесок уроку в розвиток дитини. Оцінюючи власну діяльність на уроці, індивідуальні досягнення, пропонуємо учням починати висловлювання з таких слів (за О. Я. Савченко): «Я знаю, що...», «Я можу пояснити...», «Я розумію...», «Я знаю, як зробити...», «Я вмію робити...», «Я намагаюсь...», «Я хочу досягти...», «Я відчуваю, що мені потрібно...» та ін. До речі, радимо звертатися до самоаналізу діяльності учнів і під час перевірки завдань: учитель пропонує висловитися, хто задоволений своєю роботою, а в кого є до себе зауваження, побажання тощо.

ОБЛАДНАННЯ ДО УРОКІВ

Для організації спільної з учнями роботи майже на кожному уроці використовуються математичні матеріали. Математичні матеріали — це багатофункціональні дидактичні матеріали, що використовуються або протягом серії уроків, або протягом усього навчального року. До складу математичних матеріалів входять набори «Числа та математичні знаки», «Арифметичні штанги», «Числа та кружки», «Геометричні фігури».

Треба зазначити, що певні математичні матеріали використовуються не лише окремо, а й у поєднанні з іншими. Так, «Числа та математичні знаки» використовуються разом із «Арифметичними штангами» і «Числами та кружками», «Геометричними фігурами». Окремі математичні матеріали подаються учню не в готовому вигляді, а як матеріал для певних трансформацій. Наприклад, «Арифметичні штанги» на першому етапі — це білі смужки різної довжини, які є засобом спостереження й дослідження відмінності за довжиною; на наступних етапах використовують кольорові смужки з цього набору — учні нібито «набирають» арифметичну штангу з певних частин, досліджуючи кількісні відношення між ними. У такий спосіб формуються уявлення про те, що на смужці більшої довжини укладається більша кількість мірок — смужок, що є важливим не лише для формування поняття числа й лічби, а й для формування уявлення про вимірювання величин.

Арифметичні штанги широко використовуються в серії уроків:

• Довший — коротший. Однакові за довжиною. Порівняння за довжиною. Серіація за довжиною. Напрямки руху: зверху вниз, знизу вверх; горизонтально.

• Вищий — нижчий. Однакові за висотою. Порівняння за висотою. Серіація за висотою. Напрямки руху: зліва направо, справа наліво; вертикально.

• Ширший — вужчий. Однакові за шириною. Порівняння за шириною. Зверху, знизу. Над, під.

• Кількісна лічба. Утворення пар. Формування поняття «стільки ж». Послідовність чисел у натуральному ряді. Наступне і попереднє числа.

• Порядкова лічба.

• Суть арифметичних дій додавання і віднімання.

• Додавання і віднімання за числовим променем.

• Схематична інтерпретація арифметичних дій додавання і віднімання.

• Назви компонентів і результату арифметичної дії додавання.

• Переставний закон додавання.

• Сантиметр. Вимірювання довжин відрізків.

• Взаємозв’язок арифметичних дій додавання і віднімання.

• Порівняння способом утворення пар. Різницеве порівняння.

• Одержання та назви чисел 11-20.

Матеріали «Числа та математичні знаки» використовуються під час формування поняття про числа першого десятка і є засобом навчання написання цифр. Контур кожної цифри має шершаву поверхню, наліплену на картці з гладенького паперу. Проводячи по шершавій поверхні так, щоб не опинитися на гладенькому картоні, дитина запам’ятовує рухи з написання цифри. Цей матеріал працює також у поєднанні з матеріалом «Числа та кружки». Спочатку учні присувають під певну картку необхідну кількість кружків, на наступному етапі навчання учні наліплюють кружки на прямокутники, розбиті на дві рівні частини, й у такий спосіб власноруч утворюючи числову фігуру — кісточку доміно. Числові фігури є засобом формування поняття складу чисел 2-10, суті арифметичних дій додавання і віднімання, пропедевтики переставного закону додавання, взаємозв’язку арифметичних дій додавання і віднімання.

Також серед роздавального матеріалу можуть бути:

— лічильний матеріал (ґудзики, жолуді, горіхи, шишки, каштани тощо — по 10 штук);

— нитки (мотузки) завдовжки приблизно 10 см;

— планшет.

Зверніть увагу, що дещо із зазначеного подано на вкладці до навчального зошита (частина 1).

Демонстраційний матеріал:

— набір геометричних фігур: трикутники, чотирикутники (в тому числі квадрати), п’яти-, шести-, восьмикутники, круги — по 10 штук різного кольору в двох розмірах — великі та маленькі;

— «арифметичні штанги»;

— картки з числами 1-10 і знаками « + », «-», «<», « = »;

— малюнки із зображеннями тварин, дерев, квіток, плодів, кошиків тощо; сюжетні малюнки;

— набірне полотно.

Основним засобом навчання є навчальний зошит. Це навчальне видання нового покоління, яке органічно поєднує функції підручника і робочого зошита. Зміст зошита дидактично обґрунтований і вивірений, у ньому реалізовано авторську методичну систему, яка враховує сучасні ідеї навчання математики: елементи теорії розвивального навчання, поетапного формування математичних понять, укрупнення дидактичних одиниць. За структурою посібник є технологічним — він моделює процес навчання на уроці, адже система завдань з кожної теми побудована згідно з рівнями засвоєння матеріалу учнями.

І насамкінець. Шановні колеги! Слід обов’язково пам’ятати, що зміст посібника — це лише матеріали до кожного уроку. Не обов’язково їх реалізовувати «від крапки до крапки» — використовуйте ті з них, які доцільні для ваших учнів, відповідають їхнім навчальним можливостям. А завдання для колективної роботи, практичні вправи, подані в посібнику, можуть бути використані як ідеї для створення власних навчальних завдань.

РЕАЛІЗАЦІЯ ІНТЕГРОВАНОГО ПІДХОДУ НА УРОКАХ МАТЕМАТИКИ

На рівні інтеграції освітніх галузей встановлюються зв’язки між цілями і завданнями однієї освітньої галузі та цілями і завданнями інших освітніх галузей. Виконуючи інтегровані завдання в ході спільної з учителем діяльності, дитина за допомогою дорослого «притягує» ланцюжки асоціативних зв’язків і виділяє якусь ознаку не саму по собі, а в системі інших властивостей і зв’язків інтегрованих освітніх галузей, що є основою узагальнення. Процес виділення істотних ознак відбувається тим успішніше, чим ширше орієнтується дитина в даній освітній галузі.

У навчальній програмі можливості міжпредметної інтеграції подано після кожного змістового блоку.

Міжпредметна інтеграція може бути реалізована, з одного боку, в системі навчальних завдань до уроку математики шляхом використання сюжетів, інформації з інших освітніх галузей, а з іншого боку — шляхом застосування математичних знань, умінь і навичок для вивчення інших освітніх галузей.

У сюжетах математичних завдань можна використовувати:

• інформацію про природу нашої планети;

• відомості із суспільного життя нашої країни;

• сюжети літературних творів.

Вивчаючи цифри як позначки для запису чисел, можна провести аналогію з буквами, які є позначками звуків (міжпредметна інтеграція з освітньою галуззю «Мови і літератури»). Вивчення величин і їхнього вимірювання, зокрема маси, об’єму тощо, дозволяє організовувати бесіди, в ході яких актуалізуються знання учнів з природи (освітня галузь «Природознавство»). Вивчення геометричних фігур можна інтегрувати з відповідними завданнями, які учні виконують на уроках праці, образотворчого мистецтва (освітні галузі «Технології» і «Мистецтво»). Але треба розуміти, що ці зв’язки не є системними, їх реалізація можлива лише в окремих випадках.

Також інтеграція можлива шляхом використання в сюжетах математичних завдань цікавої для першокласників інформації; використання сюжетів, які відображають реальне життя дитини.

З іншого боку, міжпредметна інтеграція математики з іншими освітніми галузями може відбуватися на цих предметах шляхом виконання певної підготовчої роботи, що буде використана на уроках математики. Так, створення арифметичних штанг із білих рисок різної довжини (через наліплення на них кольорових смужок), створення числових фігур — кісточок доміно (картонних прямокутників, на які наліпляють кружки) можуть відбуватися на уроках галузі «Технологія».

Результатом інтеграції мають бути системність знань і вміння застосовувати ідеї та методи, способи розумової діяльності в інших навчальних ситуаціях. Тому в контексті внутрішньопредметної інтеграції домінуючою є інтеграція за змістом навчання. Одиницею зрощення можуть бути, наприклад, елементи геометрії — геометричні фігури. Це можливо виходячи з того, що в процесі узагальнення та систематизації математичних уявлень і понять, одержаних дитиною в передшкільний період, далі повторюємо та розширюємо коло геометричних фігур і використовуємо їх у наступних темах.

Геометричні фігури можуть бути не лише основою для інтеграції за змістом, а й засобом дослідження учнями математичних понять і логічних операцій. Отже, ще однією одиницею зрощення при внутрішньопредметній інтеграції можуть бути засоби навчання, які проходять наскрізно, з невеличкими варіаціями, через низку тем.

Геометричні фігури як елемент змісту навчання проходять наскрізно через дочисловий період, через вивчення чисел першого десятка та арифметичних дій додавання і віднімання, водночас вони є засобом ілюстрації та засобом засвоєння інших математичних понять.

Засоби навчання, які реалізують внутрішньопредметну інтеграцію, подано в системі математичних наборів.

Математичний набір «Геометричні фігури». Саме на геометричних фігурах учні досліджують ознаки об’єктів: форму, розмір, колір. Для визначення ознак використовують прийом порівняння — встановлення, чим об’єкти схожі або відмінні. Порівнюючи групи об’єктів, визначають спільні та відмінні ознаки. Наявність спільних ознак дає можливість поєднати об’єкти в групу за спільною ознакою — класифікувати.

Наступний тип завдань з набором «Геометричні фігури» — зміна однієї ознаки з тим, щоб зберігалася певна закономірність. Ускладнення подібних завдань відбувається за рахунок ускладнення закономірності. Якщо в деякому завданні зміна відбувається за правилом: колір — форма, то в наступних завданнях можливі правила: колір — форма — розмір; колір — колір — форма — розмір тощо...

Однією з підтем узагальнення й систематизації знань, одержаних учнями перед вступом до школи, є лічба об’єктів. Тут є можливість продовжити розвиток логічного мислення через актуалізацію та подальше засвоєння понять “кожний”, “хоча б один”, “усі” тощо. Ці поняття входять до змісту завдань на кількісну та порядкову лічбу.

Наприклад, використовуємо слова “всі”, “всі, крім”, “деякі”, поєднуючи кількісну лічбу з ознаками об’єктів. Можливо складання завдань, які поєднують визначення спільних ознак (форми, кольору) з лічбою.

Порівняння геометричних фігур є основою для дослідження учнями числа як кількісної характеристики рівночисельних множин. Фігури відрізняються за формою і кольором, але їхня кількість однакова: трикутників стільки, скільки й чотирикутників, чотирикутників стільки, скільки й кругів ...; усіх фігур порівну. Число, яке характеризує кількість трикутників, чотирикутників і кругів, — це число . .

Геометричні фігури є не лише предметом спостереження для визначення спільних ознак і створення пар за спільною ознакою — в поєднанні з кількісною лічбою вони створюють можливості для порівняння груп об’єктів за кількістю елементів в них, способом утворення пар, який широко використовується на початку вивчення нумерації чисел першого десятка (до числа 6).

Поступове ускладнення завдань відбувається не лише за рахунок того, що учні мають діяти за певним порядком (спочатку мають перелічити фігури, потім утворити пари, визначити «зайву» фігуру, дійти висновку щодо порівняння чисел), а й через виконання обернених завдань, у яких учні мають не порівнювати предметні множини способом складання пар, записуючи результат порівняння у вигляді нерівності, а навпаки — до певної нерівності виконати відповідний малюнок.

Використання математичного набору «Геометричні фігури» можна продовжити в ході ознайомленні учнів з арифметичними діями додавання і віднімання. Геометричні фігури є засобом ілюстрування — схематичної інтерпретації арифметичних дій додавання і віднімання. Від практичної дії об’єднання переходимо до арифметичної дії додавання. І тут для унаочнення теж використовують геометричні фігури. Аналогічно вводиться арифметична дія віднімання.

На перших етапах засвоєння арифметичних дій перевагу надають практичним вправам на об’єднання та вилучення груп геометричних фігур, складання відповідних виразів і рівностей; згодом аналізують малюнки, що ілюструють ці практичні дії, і рівності до них.

Усвідомивши суть арифметичних дій додавання і віднімання, учні в ході аналізу певного малюнка визначають, що на ньому проілюстровано — об’єднання чи вилучення, виходячи з цього обирають арифметичну дію та складають або вираз, або рівність.

Учні виконували класифікацію геометричних фігур, поділяючи їх на групи за спільною ознакою. Тепер такі завдання є засобом засвоєння суті арифметичних дій додавання і віднімання. Об’єднуючи дві групи в одну (об’єднуємо частини в ціле), учні складають дві рівності на додавання. Вилучаючи з цілого його частину, учні складають дві рівності на віднімання. Ці завдання також мають на меті пропедевтику переставного закону додавання та пропедевтику взаємозв’язку арифметичних дій додавання і віднімання.

Для розвитку гнучкості мислення доцільно пропонувати не лише прямі завдання, а й обернені, що передбачають розбиття на групи відповідно до поданої рівності, попередньо встановивши підставу для класифікації — ознаку, за якою відрізняють дві групи фігур.

Геометричні фігури є засобом схематичної інтерпретації арифметичних дій додавання і віднімання. На перших етапах для ілюстрації використовують будь-які геометричні фігури, але така ілюстрація вимагає постійного перелічування фігур. Щоб уникнути перелічування, можна позначати кількість фігур числом; учням пропонується креслити від руки відрізки, що позначатимуть певний елемент групи об’єктів. Аналогічно подаємо схематичну інтерпретацію віднімання. На перших етапах учні самі схеми не малюють; вони аналізують подані схеми до певної ситуації, яка, до речі, проілюстрована ще й на малюнку.

Ще одна можливість використання математичного набору «Геометричні фігури» — геометричні диктанти та «геометричні хвилинки», які є доцільними для розвитку дрібної моторики та уваги, вдосконалення уявлень і понять про геометричні фігури. Для цього можна відвести час на початку уроку математики, щоб активізувати увагу учнів. З метою закріплення знань про геометричні фігури та про ознаки об’єктів слід перейти до аналізу закономірностей, за яким побудовано ряд геометричних фігур, а потім — до продовження ряду фігур за певним правилом. Ускладнення завдань на продовження ряду фігур відбувається за рахунок ускладнення правила їх розташування в ряді. Також можна поєднати завдання для «геометричних хвилинок» з елементами комбінаторики тощо.

Внутрішньопредметна інтеграція при вивченні математики можлива й за ще за одним засобом навчання — «Кружки та картки доміно». Уперше картки доміно включають до завдань на співвіднесення числа та кількості об’єктів, кількості об’єктів і числа; потім є ілюстрацією складу числа. На наступних етапах навчання вони є засобом засвоєння суті арифметичних дій додавання і віднімання, засобом дослідження переставного закону додавання та взаємозв’язку арифметичних дій додавання і віднімання.

При вивченні нумерації чисел першого десятка кількість точок на картці доміно позначають цифрою, а від цифри переходять до кількості об’єктів.

Картки доміно є засобом засвоєння складу чисел першого десятка. Учні обирають ті картки доміно, які ілюструють склад певного числа. Для розвитку гнучкості мислення використовують й обернені завдання. Розглядаючи картки доміно як засіб засвоєння складу числа, доцільно запропонувати учням не лише з’ясовувати. скільки точок прикрито на картці доміно, а й домальовувати їх. Далі такі завдання дещо ускладнюються — пропонується ще й записати кількість точок картки доміно, відновлюючи таблицю складу числа.

Картки доміно є засобом ілюстрації об’єднання частин у ціле та вилучення частини з цілого. Так, об’єднуючи точки на картці доміно зліва направо та справа наліво, учні складають дві рівності на додавання; вилучаючи з усіх точок картки ті точки, що розташовані зліва, або ті, що розташовані справа, складають дві рівності на віднімання. Подібні завдання, як і завдання з геометричними фігурами, розбитими на групи за спільною ознакою, як і завдання з відрізками, що складаються з двох частин, є гарною пропедевтикою переставного закону додавання та взаємозв’язку арифметичних дій додавання і віднімання. За допомогою цих завдань учні переконуються, що від переставляння доданків сума не змінюється; якщо від суми двох доданків відняти один доданок, то залишиться другий доданок. Поки ці закономірності сформовані на інтуїтивному рівні, на них поки що увага учнів не зверталась, але це не означає, що діти цих закономірностей не помітили і не зрозуміли.

Отже, реалізація інтегрованого підходу на уроках математики можлива у двох видах міжпредметної та внутрішньопредметної інтеграції. Внутрішньопредметна інтеграція у навчанні математики реалізується за двома одиницями зрощення — за елементом змісту навчання (геометричними фігурами) та за засобом навчання (картками доміно). Зазначимо, що на певних темах («Арифметичні дії додавання і віднімання», «Переставний закон додавання», «Взаємозв’язок арифметичних дій додавання і віднімання») реалізується інтеграція як за змістом, так і за засобами навчання. Головне, що за таких умов відбувається поєднання нового навчального змісту з раніш вивченим.

Бажаємо успіхів і натхнення!






Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.