ГЕОМЕТРІЯ
Уроки для 9 класів

УРОК № 43

Тема. Координати вектора

 

Мета уроку: формування поняття координат вектора та вміння застосовувати вивчені означення і властивості до розв'язування задач.

Тип уроку: комбінований.

Наочність і обладнання: таблиця «Декартові координати та вектори на площині» [13].

Вимоги до рівня підготовки учнів: описують координати вектора; застосовують вивчені означення і властивості до розв'язування задач.

Хід уроку

I. Перевірка домашнього завдання

Перевірити наявність виконаного домашнього завдання та відповісти на запитання, які виникли в учнів під час його виконання.

Фронтальна бесіда

  1. 1)  Що таке вектор? Як позначаються вектори?
  2. 2)  Які вектори називаються однаково напрямленими (протилежно напрямленими)?
  3. 3)  Що таке абсолютна величина вектора?
  4. 4)  Що таке нульовий вектор?
  5. 5)  Які вектори називаються рівними? Яку властивість мають рівні вектори?
  6. 6)  Скільки різних векторів можна відкласти від заданої точки, які дорівнюють даному вектору?

II. Сприймання й усвідомлення нового матеріалу

Поняття координат вектора

Координати вектора , що має початок у точці А і кінець у точці В, дорівнюють різниці координат точок В і А.

Якщо початок вектора  є точка А(хА; уА), а кінець вектора — точка В(хВ; уВ), то (хВ – хА; уВ – уА) (рис. 197).

 

Рівні вектори мають рівні координати. Якщо відповідні координати векторів однакові, то вектори рівні. Якщо (a1; a2) = (b1; b2), то  і навпаки, якщо , то (a1; a2) = (b1; b2).

Протилежні вектори мають протилежні відповідні координати. Якщо відповідні координати двох векторів протилежні, то вектори протилежні. Якщо (a1; a2), (b1; b2) і  = -, то  і навпаки.

Довжина вектора дорівнює квадратному кореню із суми квадратів його координат. Якщо задано вектор (a1; a2), то .

Розв'язування вправ

  1. 1)  Дано точки А(2; 3), B(1; 1). Які координати мають вектори  і ?
  2. 2)  Знайдіть координати вектора , якщо А(5; 1) і О — початок координат.
  3. 3)  Коли вектор (1; 2) відклали від початку координат, то дістали вектор . Знайдіть координати точки А.
  4. 4)  Знайдіть , якщо А(1; 2), В(-3; -2).
  5. 5)  Дано точки: А(3; -2), В(-4; 6), С(-2; -6), D(x; y). Знайдіть х і у, якщо  = .

III. Закріплення й осмислення нового матеріалу

Розв'язування задач

  1. 1.   Від точки А відкладено вектор  = . Знайдіть координати точки А, якщо В(-1; 5), (1; 3).
  2. 2.   Який із векторів (2; 4), (-1; 3) має більшу довжину?
  3. 3.   Дано точки A(0; 1), B(1; 0), C(1; 2), D(2; 1). Доведіть рівність векторів  і .
  4. 4.   Дано три точки A(1; 1), В(-1; 0), C(0; 1). Знайдіть таку точку D(x; y), щоб виконувалася рівність  = .

 

IV. Домашнє завдання

  1. 1.   Вивчити теоретичний матеріал.
  2. 2.   Розв'язати задачу.

Знайдіть , якщо А(3; 2), В(-3; -4). Знайдіть координати точки С(0; у), якщо  = .

 

V. Підбиття підсумків уроку

Заповніть пропуски в тексті.

Координатами вектора з початком у точці А(хА; уА) і кінцем у точці В(хB; уB) будуть числа х = ..., у = …. Рівні вектори мають рівні ..., і навпаки, ... . Модуль вектора (a1; a2) дорівнює ....




Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити