УСІ УРОКИ ФІЗИКИ 10 клас

1-й семестр

 

МЕХАНІКА

 

1. Кінематика

 

Урок 10/12

Тема. Графіки залежності кінематичних величин від часу під час рівномірного прямолінійного руху

 

Мета уроку: закріпити навички читання та побудови графіків рухомого тіла при прямолінійному рівноприскореному русі

Тип уроку: закріплення знань

 

РЕКОМЕНДАЦІЇ ЩОДО ПРОВЕДЕННЯ УРОКУ

Вміння та навички учнів будувати й читати графіки є гарним засобом перевірки рівня усвідомленого засвоєння ними основних понять рівноприскореного руху.

Слід мати на увазі, що учні на уроках математики вивчали лінійну функцію вигляду, де а і b можуть бути як позитивними, так і негативними величинами.

Крім того, у курсі алгебри вивчається квадратний тричлен, що записується у вигляді у = ах2 + bх + с, де в якості незалежної змінної виступає х.

Зіставимо рівняння, що вивчаються під час уроків з математики, з рівняннями руху в кінематиці:

 

Математика

Фізика

у = ах + b

у = ах2 + bх + с

 

Це порівняння сприятиме не тільки актуалізації міжпредметних зв’язків, але і пояснить учням сутність явищ, які вивчаються.

Далі необхідно зобразити на дошці кілька графіків, а учні (у свою чергу) повинні спробувати якісно пояснити і визначити характер руху, значення початкової швидкості й прискорення, записати відповідні рівняння руху.

Потім можна запропонувати учням виконати кілька завдань на графіки залежності кінематичних величин від часу.

Задачі, що розв'язуються під час уроку

1. За графіками x(t) і x(t) (див. рис.) опишіть рух. Чому відповідають точки А на кожному з рисунків? Запишіть формули x(t) для кожного з рухів.

Розв’язування

На першому рисунку показано графіки прямолінійних рівномірних рухів (x = 0,33 м/с і x = -0,5 м/с). Точка А відповідає моменту зустрічі тіл.

 

 

На другому рисунку — графіки прямолінійного рівноприскореного руху (x = 1 + 0,33t і x = 3 - 0,5t). Точка А на цьому рисунку відповідає моменту, коли швидкості обох тіл однакові.

2. Прямолінійний рівноприскорений рух описується формулою х = -4 + 2t - t2. Опишіть рух і побудуйте до нього графіки x(t), sx(t), l(t). 

Розв’язування

Оскільки формула x(t) являє собою окремий випадок загальної формули  рух є прямолінійним рівноприскореним, причому х0 = -4 м, 0х = 2 м/с, ах = -2 м/с2. Таким чином, за першу секунду швидкість тіла зменшилася від 2 м/с до нуля, а потім тіло рухалося в протилежному напрямі осі Ох, причому модуль його швидкості збільшувався. Залежності швидкості й переміщення від часу задаються формулами   Графіки цих залежностей наведені на рисунку.

 

 

Для побудови графіка l(t) зручніше скористатися не формулою, а вже побудованим графіком sx(t).

Слід урахувати, що при русі в бік, протилежному осі Ох (коли sx < 0), шлях позитивний, причому l = |sx|. Іншими словами, залежність l(t) не є спадаючою. Щоб отримати з графіка sx(t) графік l(t), треба симетрично відобразити відрізок графіка при t > 1 с вгору.

 

 

3. На рисунках наведено графіки sx(t) і x(t) для двох різних прямолінійних рухів.

 

 

Проаналізуйте графіки, даючи відповіді на наступні запитання:

а) коли тіло рухалося в «негативному» напрямі (протилежному до осі Ох)?

б) коли швидкість тіла дорівнювала нулю?

в) коли тіло рухалося найшвидше?

г) коли координата тіла була найменшою?

д) коли тіло рухалося з максимальним за модулем прискоренням?

Указівка

Тіло 1: а) 1,7 сt4,5 с; б) t = 1,7 с, t = 4,5с, t 7 с; в) 0,4 с ≤ t 0,7 с; г) t = 4,5 с; д) t = 1,7 с, t= 4,5 с.

Тіло 2: а) 4 с t 5,5 с; б) t = 0, t = 4 с, 5,5 с; в) t = 1,7 с; г) t = 0; д) 0,4 с ≤ t 0,7 с.

 

Домашнє завдання

1. П.: §§ 10, 11. 2.

2. 36:

р1) - 4.4; 4.12; 4.13; 4.14;

р2) - 4.42; 4.43; 4.44, 4.46;

р3) - 4.67, 4.68; 4.69; 4. 70, 4.71.






Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.