МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ

Розділ II. РІВНЯННЯ І НЕРІВНОСТІ

§17. НЕРІВНОСТІ, ЩО МІСТЯТЬ ЗМІНУ МОДУЛЯ

1. Нерівність виду |f(х)| > а та |f (х)| ≥ а, а — число.

 

Розглянемо спочатку нерівність |х| > а. Якщо а < 0, то очевидно, що х - будь-яке число, оскільки |х| 0 для всіх значень х.

Якщо а 0, то позначимо на числовій прямій корені рівняння |х| = a тобто числа х1 = -а; х2 = а. Вони розбивають числову пряму на три інтервали (мал. 34). Легко перевірити, взявши по одній «пробній» точці у кожному інтервалі, що нерівність задовольняють такі значення х : х < -а або х > а.

 

 

Узагальнюючи маємо:

множиною розв’язків нерівності |f(x)| > а у випадку х < 0 є всі числа з ОДЗ функції f(x);

а у випадку а 0 ця нерівність рівносильна сукупності нерівностей

Аналогічно можна розв’язувати нерівність |f(х)| a.

Приклад. Розв’язати нерівність |х - 2| > 3.

Розв’язання. Нерівність рівносильна сукупності нерівностей

Далі маємо Отже,






Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.