Матеріали для Нової української школи 1 клас - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ

Розділ II. РІВНЯННЯ І НЕРІВНОСТІ

§17. НЕРІВНОСТІ, ЩО МІСТЯТЬ ЗМІНУ МОДУЛЯ

2. Нерівності виду f (x) < а та |f(х)| ≤ а, а — число.

 

Спочатку розглянемо нерівність |x| < а. Якщо а < 0, то очевидно, що нерівність не має розв’язків, оскільки |х| 0 для всіх значень х.

Якщо а 0, то міркуючи аналогічно нерівності |х| > а (мал. 35), матимемо, що нерівність задовольняють такі значення x: -а < х < а.

 

 

Узагальнюючи маємо:

нерівність |f(x)| < а у випадку а < 0 немає розв’язків; а у випадку a 0 ця нерівність рівносильна подвійній нерівності -а < f(x) < а.

Аналогічно можна розв’язати нерівність |f(x)| а.

Приклад. Розв’язати нерівність |х + 3| 5.

Розв’язання: Маємо -5 x + 3 5. Далі -5 3 х 5 - 3; -8 х 2.

Зауважимо, що у випадку коли f(x) не є лінійною функцією, від подвійної нерівності -а < f(x) < a (aбо –a (х) a) доцільно перейти до системи









загрузка...

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами. Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посилання на сайт, будьте вдячними ми затратили багато зусиль щоб привести інформацію у зручний вигляд.

© 2008-2019 Всі права на дизайн сайту належать С.Є.А.