МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ

Розділ II. РІВНЯННЯ І НЕРІВНОСТІ

§29. ЛОГАРИФМІЧНІ НЕРІВНОСТІ.

 

По аналогії з рівняннями, нерівності називають логарифмічними, якщо в цю нерівність невідома входить лише під знаком логарифма.

 

1. Нерівності виду loga x ≥ b, loga x > b, loga x ≤ b, loga x < b.

 

При розв’язуванні нерівностей виду loga x b, loga x > b, loga x b, loga x < b можна користуватися наступними принципами:

1) якщо а > 1, то при переході до нерівності-неслідну знак нерівності залишимо без змін; якщо 0 < а < 1, то знак нерівності змінюємо на протилежний.

2) якщо в отриманій нерівності-неслідну є гарантія виконання ОДЗ: х > 0, то отриману нерівність нічим не доповнюємо; якщо такої гарантії немає, то доповнюємо дану нерівність умовою х > 0.

Покажемо (у вигляді схеми) як дані принципи використовуються, наприклад, при розв’язуванні нерівності loga х > b.

 

loga x b a > 0, a 0, b – будь-яке число

0 < а < 1

а > 1

Знак нерівності змінюється на протилежний

0 < x ab

Знак нерівності не змінюється

x ab

 

Аналогічно розв’язуються нерівності, у яких замість х, у нерівність входить f(x).

Приклад. Розв’яжіть нерівність:

Розв’язання.






Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.