Матеріали для Нової української школи 1 клас - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ

Розділ III. ФУНКЦІЯ

§23. ВИЗНАЧЕНИЙ ІНТЕГРАЛ. ФОРМУЛА НЬЮТОНА-ЛЕЙБНІЦА.

 

Дамо одне з означень визначеного інтегралу.

Визначеним інтегралом від неперервної на [а;b] функції f(x) з нижньою межею а і верхньою межею b називають різницею F(b) - F(a), де F(x) - одна з первинних для функції f(x). Позначають визначений інтеграл так f(x)dx.

При обчисленні різниці F(b) - F(а) можна брати будь-яку з первісних функцій f(х), що записуються в загальному вигляді F(x) + С. Але прийнято застосовувати ту первісну для якої С = 0.

За наведеним означенням маємо:

 

Цю формулу називають формулою Ньютона-Лейбніца.

Зауважимо, що при обчисленні визначених інтегралів зручно різницю F(b) - F(a) записують так F(x) . Застосовуючи це позначення формулу Ньютона-Лейбніца записують ще й у такому вигляді:

Розглянемо приклади знаходження визначень інтегралів.

Приклад 1. Обчисліть інтеграл sіn хdх.

Розв’язання. Для функції f(х) = sin х однією з первісних є F(х) = -cos х. Маємо за формулою Ньютона-Лейбніца

Приклад 2. Обчисліть інтеграл

Розв’язання. Спочатку знайдемо первісну для функції f(х) = 2х + 3х2 + 1. Використовуючи правила обчислення первісних та таблицю первісних, маємо:

Матимемо

Зауважимо, що при оформленні цього прикладу знаходження первісної можна було не записувати окремо. Тоді оформлення набуде наступного вигляду:

Приклад 3. Обчисліть інтеграл

Розв’язання. Використаємо правило 3 знаходження первісних. Маємо









загрузка...

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами. Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посилання на сайт, будьте вдячними ми затратили багато зусиль щоб привести інформацію у зручний вигляд.

© 2008-2019 Всі права на дизайн сайту належать С.Є.А.