МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ

Розділ III. ФУНКЦІЯ

§24. ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА ДО ОБЧИСЛЕННЯ ПЛОЩ КРИВОЛІНІЙНИХ ТРАПЕЦІЙ ПЛОЩ ПЛОСКИХ ФІГУР ТА ПРИКЛАДНИХ ЗАДАЧ.

1. Означення криволінійної трапеції та знаходження її площі.

 

Нехай на відрізку [а;b] осі абсцис задано неперервну функцію у = f(x), яка на цьому відрізку набуває лише тільки невід’ємні значення. Фігуру, обмежену графіком функції у = =f(х), віссю абсцис та прямими х = а, х = b називають криволінійною трапецією (мал. 113). Її площу S можна знайти за допомогою визначеного інтеграла

 

 

Приклад 1. Обчисліть площу криволінійної трапеції, обчисленої графіком функції f(х) = х3 та прямими у = 0; х = 1; х = 2.

Розв’язання (мал. 114). Маємо

 

 

Приклад 2. Обчисліть площу криволінійної трапеції обмеженої графіком функції f(x) = sin х та прямими

Розв’язання (мал. 115). Маємо

 





Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити