МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

ГЕОМЕТРІЯ

Розділ ІІ. СТЕРЕОМЕТРІЯ

§17. ПІРАМІДА.

3. Перерізи піраміди.

 

Розглянемо найпростіший переріз піраміди.

Переріз піраміди, що проходить через два бічних ребра, що не належать одній грані, називають діагональним перерізом.

На малюнку 468: QВD - діагональний переріз чотирикутної піраміди QАВСD.

 

 

Діагональні перерізи піраміди - трикутники, однією з вершин яких є вершина піраміди, а протилежна їй сторона - діагональ основи.

Приклад 1. Знайти периметр діагонального перерізу правильної чотирикутної піраміди, сторона основи якої дорівнює 3 см, а бічне ребро - 5 см.

Розв’язання. 1) Нехай QАВСD - правильна чотирикутна піраміда (мал. 467), QАС - її діагональний переріз.

2) За умовою

4) Тоді периметр перерізу Р = 6 + 5 + 5 = 16 (см).

Часто у задачах розглядають перерізи піраміди, що проходять через сторону основи піраміди і перетинають бічні ребра піраміди.

Приклад 2. У правильній трикутній піраміді, сторона основи якої дорівнює 8 см, через сторону основи перпендикулярно До бічного ребра проведено переріз. Знайти площу перерізу, якщо він утворює кут 30° із площиною основи піраміди.

Розв’язання. 1) Проведемо у правильній піраміді QABC з основою ABC висоту ВМ бічної грані BQC (мал. 469).

2) ВМС = АМС (за двома сторонами і кутом між ними), тому АМС = BMC = 90°.

3) За ознакою перпендикулярності прямої і площини: АМВ QC. Тому АВМ - переріз, площу якого треба знайти.

4) CN - висота основи піраміди, CN АВ, тому за теоремою про три перпендикулярами MN АВ.

5) За ознакою перпендикулярності прямої і площини маємо MNC АВ, тому кут MNC - кут, що утворює переріз із площиною основи. За умовою MNC = 30°.

 





Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити