Матеріали для Нової української школи 1 клас - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

МАТЕМАТИКА. ПОВНИЙ ПОВТОРЮВАЛЬНИЙ КУРС

ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ ТА ДЕРЖАВНА ПІДСУМКОВА АТЕСТАЦІЯ

ГЕОМЕТРІЯ

Розділ ІІ. СТЕРЕОМЕТРІЯ

§17. ПІРАМІДА.

4. Площа повної та бічної поверхонь піраміди.

 

Площею повної поверхні піраміди називають суму площ всіх її граней, а площею бічної поверхні піраміди - суму площ її бічних граней.

Площа Sповн повної поверхні піраміди виражається через площу Sбіч її бічної поверхні і площу Sосн основи піраміди формулою

Приклад 1. Всі плоскі кути при вершині тетраедра дорівнюють 30°. Знайти площу бічної поверхні цього тетраедра, якщо його бічні ребра дорівнюють 4 см, 5 см і 6 см.

Розв’язання. 1) на малюнку 470 тетраедр QАВС. За умовою

 

 

Теорема про площу бічної поверхні правильної піраміди. Площа бічної поверхні правильної піраміди дорівнює добутку півпериметра основи на анофему.

Приклад 2. Знайти площу повної поверхні правильної чотирикутної піраміди, сторона основи якої дорівнює 8 см, а висота - 3 см.

Розв’язання. 1) На малюнку 471 зображено правильну чотирикутну піраміду QABCD, AD = 8 см - сторона основи, яка є квадратом, QK = 3 см - висота піраміди.

2) Sповн = Sбіч + Sосн.

3) S0CH = AD2 = 82 = 64 (см2).

4) QM - висота, медіана QDC. Оскільки М середина CD, а К – середина АС, то КМ - середня лінія ACD. Тому КМ = AD/2 = 8/2 = 4 (см).

6) Sбіч = pl, де р - півпериметр основи, l = QM - апофема.

 









загрузка...

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами. Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посилання на сайт, будьте вдячними ми затратили багато зусиль щоб привести інформацію у зручний вигляд.

© 2008-2019 Всі права на дизайн сайту належать С.Є.А.