Матеріали для Нової української школи 1 клас - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Математика - Ґрунтовна підготовка до зовнішнього незалежного оцінювання (ЗНО) за 100 днів - 2018 рік

АЛГЕБРА I ПОЧАТКИ АНАЛІЗУ

Частина перша. ОПРАЦЮВАННЯ ТЕОРЕТИЧНОГО МАТЕРІАЛУ

Розділ III.ПОВТОРЕННЯ МАТЕРІАЛУ ЗА ПРОГРАМОЮ З МАТЕМАТИКИ 11 КЛАСУ

Тема 25. ПОХІДНА ФУНКЦІЇ, ЇЇ ГЕОМЕТРИЧНИЙ ТА МЕХАНІЧНИЙ ЗМІСТ

Означення похідної

Нехай задано функцію у = f(х) на деякому проміжку. Візьмемо довільну внутрішню точку хцього проміжку, надамо значенню х0 довільного приросту ∆х (число Ах може бути як додатним, так і від’ємним), але такого, щоб точка х0 + ∆х належала даному проміжку.

Тоді

1) обчислимо в точці х0 приріст ∆у = ∆f0) функції:

∆у = ∆f (x0) = f0 + ∆x) - 0);

2) складемо відношення  =  = ;

3) знайдемо границю цього відношення за умови, що ∆х → 0, тобто:

 =   

Якщо дана границя існує, то її називають похідною функції у = f(х) у точці х0 і позначають f'(х0)або y(читають так: «еф штрих від х0 або у штрих»).

Похідною функції у = f(х) у точці х0 називають границю відношення приросту функції до приросту аргументу за умови, що приріст аргументу прямує до нуля, а границя існує, тобто

f’(x0) =  = .

Приклад 1. Знайдіть похідну функції f(х) = 3х2 + 2 у точці х0.

Розв'язання

Знайдемо приріст функції:

f = f (х0 + ∆х) - f (х0) = 3 (х0 + ∆х)2 + 2 - 3х20 - 2 =

= 3x20 + 6х0 ∆х + 3 ∆х2 + 2 - 3x2- 2 = 6х0 ∆х + 3 ∆х2 = ∆х(6х0 + 3 ∆х).

Знайдемо відношення приросту функції до приросту аргументу:

 =  = 6x0 + 3∆x.

Знайдемо похідну даної функції в точці х0:

f’(x0) =  =  (6x0 + 3∆x) = 6x0 + 3 ∙ 0 = 6x0.

Відповідь: 6х0.

Приклад 2. Знайдіть похідну функції f(х) = kx + b(k i b — сталі) у точці х0.

Розв’язання

Знайдемо приріст функції:

f = f (x0 + ∆х) - f (x0 ) = k (x0 + ∆х) + kхb = kх0 + ∆х - kх0 = ∆х.

Знайдемо відношення приросту функції до приросту аргументу:

 =  = k.

Отже, f'(х0) =  = k = k, або (kх + b)' = k.

Відповідь: k

Із другого прикладу можна зробити висновок, що похідна лінійної функції — стала величина, яка дорівнює кутовому коефіцієнтy прямої. Якщо у формулі (kx b)' покласти k= 0, = С, де С — довільна стала, то одержимо, що С = 0, тобто похідна сталої дорівнює нулю.

Якщо у формулі (kx b)' = покласти = 1, b = 0, то одержимо х' = 1.

Функцію, яка має похідну в точці х0, називають диференційованою в цій точці. Функцію, яка має похідну в кожній точці деякого проміжку, називають диференційованою на цьому проміжку. Операція знаходження похідної називається диференціюванням.

Нехай D1 — множина точок, у яких функція y = f(x) диференційована. Якщо кожному  D1 поставити у відповідність число f(a), то одержимо нову функцію з областю визначення D1. Цю функцію позначають f':

f’(x) =  

Фізичний зміст похідної

Нехай матеріальна точка рухається прямолінійно за законом f(t) (рис. 1).

Рис. 1

У момент t0 вона зайняла положення M0 і пройшла шлях s0 f(t0). Знайдемо швидкість точки в момент t0.

Припустимо, що за довільно вибраний проміжок часу ∆t, починаючи з моменту t0, точка перемістилася на відстань ∆і зайняла положення М1.

Тоді t1t0+ ∆t, s1= f(t1= s0 + ∆s.

За проміжок часу At матеріальна точка проходить шлях

f(t1) - f(t0) = f(t0 + ∆t) - f(t0). Середня швидкість (vcepруху на проміжку М0M1 дорівнює

vcep =  = .

Ця величина дає лише приблизне уявлення про швидкість руху матеріальної точки на розглянутому проміжку. Вона буде точнішою, якщо проміжок ∆t зменшуватиметься.

Таким чином, можна вважати, якщо ∆t наближається до нуля, то середня швидкість vcep = буде наближатися до швидкості в момент t0.

Миттєвою швидкістю точки, яка рухаєтеся прямолінійно, у момент t0 називають границю середньої швидкості за умови, що ∆t наближається до нуля:

vcep =  =  =  .

Числа AtAs називають відповідно приростом часу і приростом шляху.

Отже, миттєвою швидкістю точки, яка рухаєтеся прямолінійно, є границя відношення приросту шляху ∆до відповідного приросту часу At, коли приріст часу наближається до нуля.

Порівнюючи одержані результати з означенням похідної, можна зробити висновок: якщо матеріальна точка рухається прямолінійно і її координата змінюється за законом s(t). то швидкість її руху (t) у момент дорівнює похідній s'(t):

v (ts'(t).

Приклад 3. Точка рухається прямолінійно за законом s(t) = 5t2 +1 + 3 (— шлях у метрах, — час у секундах). Знайдіть швидкість точки: а) у довільний момент t0; б) у момент t = 2 с.

Розв'язання

а) Нехай значення аргументу t0 одержало приріст tтоді t1 t0 t.

Знайдемо відповідний приріст шляху:

∆s = s(t0 + ∆t) - s(t0) = 5(t0 + ∆t)2 + (t0 + ∆t) + 3 - (5t20 + t0 +3) =

= 5t20 + 10t0 ∆t + 5∆t2 + t0 + ∆t + 3 - 5t20 - t0 - 3 = 10 t0 ∆t+ 5 ∆t2 + ∆t.

Знайдемо відношення приросту шляху до приросту часу (середню швидкість):

 =  =  = 10t0 + 1 + 5∆t.

Знайдемо границю відношення приросту шляхy до приросту часу (границю середньої швидкості):

 =  (10t0 + 1 + 5∆t) = 10t0 + 1.

Отже, миттєва швидкість точки в довільний момент t0 дорівнює 10t0 + 1.

Таким чином, при заданому законі руху (t) миттєва швидкість (t) у довільний момент обчислюється за формулою (t) = 10+ 1.

б) Якщо t = 2 с, то маємо

v(2)= 10 ∙ 2 + 1 = 21 (м/с).

Відповідь: а) 10t0 + 1; б) 21 (м/с).

Геометричний зміст похідної

У курсі геометрії дотичною до кола називають пряму, яка лежить у площині кола і має з колом лише одну спільну точку. Таке означення дотичної не може бути перенесено на всі криві (парабола, синусоїда, гіпербола тощо).

Наприклад, вісь ОТ має тільки одну спільну точку з графіком функції у = х3, проте її не можна вважати дотичною до кубічної параболи в точці 0 (рис. 2).

Пряма у = 1 і синусоїда у = sin х мають безліч спільних точок (рис. 3), проте пряму у = 1 вважають дотичною до синусоїди.

Рис. 2

Рис. 3

Для введення означення дотичної до кривої розглянемо функцію у = f(х) і її графік — криву лінію (рис. 4). Нехай точки А і належать графіку функції у f(x), проведемо січну AM.

Зафіксуємо точку А. Нехай точка М, рухаючись по кривій, наближається до точки А. При цьому січна AM буде повертатися навколо точки А і в граничному положенні при наближенні точки М до точки А січна займе положення прямої ATПряму AT називають дотичною до даної кривої в точці А.

Рис. 4

Дотичною AT до графіка функції у = f(х) в точці А називають граничне положення січної AMколи точка M, рухаючись по кривій, наближається до точки А.

Слід мати на увазі, що не в усякій точці кривої можна провести до неї дотичну. На рис. 5 зображено криву у f(x), яка в точці А не має дотичної, бо якщо точка М буде наближатися до точки А по лівій частині кривої, то січна МА займе граничне положення AQ.

Якщо точка буде наближатися но правій частині кривої, то січна NA займе граничне положення ATОдержуємо дві різні прямі AQ і ATЦе означає, що в точці А до даної кривої дотичної не існує.

Поставимо задачy: провести дотичну до графіка функції у = f(х) у точці А (х0; у0).

Дотична — це пряма, а положення прямої у = kх + b, яка проходити через точку А (х0; у0), визначається кутовим коефіцієнтом прямої tg а, де а — кут між прямою і додатним напрямом осі ОХ (рис. 6).

Отже, провести дотичну до графіка означає знайти число k.

Рис. 5

Рис. 6

Нехай у точці А (х00) (рис. 7) кривої у f = (X) існує дотична, визначимо кутовий коефіцієнт дотичної. Для цього:

1) надамо аргументу х0 приросту ∆х, одержимо нове значення аргументу х0 + ∆х:

2) знайдемо відповідний приріст функції ∆у = 0 + ∆х) - f0);

3) знайдемо відношення  = .

Із трикутника АМК маємо  tgMAK. Оскільки ∠MAK  — куту нахилу січної AM із додатним напрямом осі ОХ, то  tg;

Рис. 7

4) якщо ∆х → 0, то ∆→ 0, і точка М буде переміщуватися но кривій, наближаючись до точки А.

При цьому січна AM буде повертатися навколо точки А, а величина кута  буде змінюватися зі зміною ∆х. Граничним положенням січної AM при ∆х → 0 буде дотична АТ, яка утворює з додатним напрямом осі ОХ деякий кут. величину якого позначимо через а.

Отже,  =  tg = tga = — кутовий коефіцієнт дотичної.

Порівнюючи одержані результати з означенням похідної, можна зробити висновок: значення похідної функції у = f(х) у точці х0 дорівнює кутовому коефіцієнту дотичної до графіка функції в точці з абсцисою х0:

f'(x0) = k = tga (pиc. 8).

Рис. 8

Похідні суми, добутку, частки двох функцій та функцій у = kх + b; у = sin xcosx; у = tgx; у = xn∈ N; у = ax; у = logax. Похідна складеної функції

Похідна суми (різниці) двох функцій, кожна з яких має похідну, дорівнює сумі (різниці) похідних цих функцій:

(f(x)±g(x))' = f'(x) ± g'(x).

Похідна добутку двох функцій, кожна з яких має похідну, дорівнює сумі добутків кожної функції на похідну другої функції:

(f(x) g (x))' = f' (x) g (x) + f(x) g (x).

Похідну частки двох функцій f(x) і g (x), кожна з яких має похідну і g (x) ≠ 0, знаходять за формулою

()’ = 

Сталий множник можна виносити за знак похідної:

f(x))'=сf'(х).

Наведені формули називають правилами диференціювання.

Похідні елементарних функцій знаходять, користуючись таблицею похідних.

Таблиця

C' = 0, де C — стала

(x)' = 1;

(ex)' = ex;

(xa)' = axa-1, a ∈ R

(sin a) ’ = cos a;

(ln x)' = ;

(cos a) ’ = -sinx;

(tgx)' = ;

(ax)' = ax ln а, де a > 0, а ≠ 1; a — стала

(ctg x)' = - ;

()’ = ;

(loga x)’ = , де a > 0, а ≠ 1: a — стала

У математиці розглядають складені функції.

Розглянемо приклад.

Приклад 4. Нехай треба обчислити за заданим значенням а значення функції yяку задано формулою у = .

Для цього спочатку треба обчислити за заданим значенням А значення (X) = 9 - x2, а потім за значенням обчислити у = f(u) = .

Отже, функція ставить у відповідність числу а число u, а функція f— числу число у. Говорять, що у є складеною функцією з функцій g i f  і пишуть у = f((X)).

Функцію (X) називають внутрішньою функцією, або проміжною змінного, функцію f(u) — зовнішньою функцією. Отже, щоб обчислити значення складеної функції у = f((X)) у довільній точці, х спочатку обчислюють значення внутрішньої функції g, а потім f(u).

Приклад 5. Розглянемо функцію у = .

Вона є складеною з функцій cos x, у = , де cosx — внутрішня функція,  - зовнішня функція.

Приклад 6. Запишіть складені функції f(g (x)) і g (f(x)), якщо f(x) = sin x, g (x) = x2.

Розв'язання

f(g(x)) = sing(x) sinx2; g(f(x)) = (f(x))2 =(sinx)2 = sin2x.

Складена функція f(g (x)) має проміжну змінну g (x). Тому при знаходженні похідної складеної функції ми будемо вказувати, по якій змінній взято похідну, використовуючи при цьому спеціальні позначення:

yx =  — похідна функції у по аргументу х;

yu =  — похідна функції у по аргументу u;

ux =  — похідна функції по аргументу х.

Теоремa

Похідну складеної функції у f((х)) знаходять за формулою

y'х = y'∙ u'х,

де g(x), або похідна складеної функції дорівнює похідній зовнішньої функції по проміжній змінній, помноженій на похідну внутрішньої функції по основному аргументу.

Приклад 7. Знайдіть похідну функції у = (3x3 - 1)5.

Розв'язання

у = (3x3 - 1)5 — складена функція, у якої у = u5, де = 3x3 - 1, тоді

у'х = y'∙ u'х, y' = (u5)'∙(3x3 - 1)' = 5u4 ∙ 9x2 = 5(3х3 -1)4 ∙ 9x2 = 45х2 (3х3 - 1)4.

При обчисленні похідної складеної функції введення допоміжної букви и для позначення проміжного аргументу не є обов’язковим. Тому похідну даної функції знаходять відразу як добуток похідної степеневої функції u5 на похідну від функції 3x3 - 1:

у' = ((3х3 - 1)5)' = 5(3х3 -1 )4∙ (3х3 -1)' = 5(3х3 -1)4 ∙ 9х2 = 45х2 (3х3 - 1)4.

Приклад 8. Знайдіть похідні функцій:

а) y = ;

б) y = sin(3x + 5);

в) у = cos2 х;

г) у = cos х2.

Розв'язання

ay = ()’ =  ∙ (x2 + 2x)’ =  = ;

б) y' = (sin (3х + 5))' = cos (3х + 5) ∙ (3х + 5)' = 3cos (3х + 5);

в) у' = (cos2 х)' = 2cos х ∙ (cos х)' = 2 cosx ∙ (-sin х) = -2cos xsin x = -sin(2x);

г) y' = (cosx2)' = -sinx2 ∙ (x2)' =-2xsinx2.

Виконайте тест 25

Завдання 1—8 мають по п’ять варіантів відповіді, серед яких лише однин правильним. Виберіть правильну, на Вашу думку, відповідь і позначте її у бланку А.

1. Для якої з поданих функцій f'(х) = 6х + 5?

А

Б

В

Г

Д

f(х) = 2x + 3

f(х) = х2 + х

f(х) = 5x2 + 6х

f (х) = 3х2 + 6х

f(х) = 3х2 + 5х + 6

2. Точка рухається за законом (t) = 6 - 4+12 (м). У який момент часу швидкість руху точки дорівнює 10 м/с?

А

Б

В

Г

Д

3. Знайдіть кутовий коефіцієнт дотичної, проведеної до параболи у = х2 - 4х у точці з абсцисою х = 2,5.

А

Б

В

Г

Д

- 1

0

1

-2

2

4. Знайдіть градусну міру кута між дотичною, проведеною до параболи у = х2 - 2х + 3 у точці з абсцисою х0 = 0,5, і додатним напрямом осі абсцис.

А

Б

В

Г

Д

45°

135°

60°

arctg 2

5. Відомо, що тангенс кута нахилу дот іншої, проведеної до графіка функції у = f(х) у точці з абсцисою х0 = -1, дорівнює 3. Запишіть рівняння дотичної, проведеної до графіка функції в цій точці, якщо f(x0) = 2.

А

Б

В

Г

Д

у = 2х + 3

у = 3х + 4

у = 4х + 5

у = 2х - 1

у = 3х + 5

6. Які з поданих функцій є неперервними в точці х0 = 0 і не мають похідної в цій точці?

А

Б

В

Г

Д

f(х) = 2|х|

f(x) = 

f(x) = x2 - 1

f(х) = x+ 1

f(х) = x2

7. Знайдіть значення похідної функції f(х) = (х2 - 1) (х3 +х) у точці х0 = -1.

А

Б

В

Г

Д

4

-6

-7

-8

-9

8. Знайдіть значення похідної функції f(х) = х cos х у точці х.

А

Б

В

Г

Д

1 + 

-1 - 

1

0

-1

У завданні 9 до кожного з чотирьох рядків інформації, позначених цифрами, виберіть один правильний, на Вашу думку, варіант, позначений буквою. Поставте позначки в таблицю відповідей до завдань на перегині відповідних рядків (цифри) і колонок (букви).

9. Установіть відповідність між функціями (1—4) та їхніми похідними (А—Д).

1

y = ln2x

А

y' = 

2

y = lnx2

Б

y' = 

3

y = ln2x2

В

y' = 

4

y = ln2x

Г

y' = 

   

Д

y' = 

Розв’яжіть завдання 10—12. Одержані відповіді запишіть у бланку А.

10. Точка рухається за законом х (t) = 1 + 2t2 (м). Знайдіть швидкість руху точки в момент t = 1 с.

11. Дотична до графіка функції y = f(x) у точці з абсцисою х0 утворює з додатним напрямом осі ОХ кут 45°. Знайдіть f'(х0).

12. Знайдіть значення похідної функції f(x) =  у точці х0 = 0 .

Бланк відповідей А

У завданнях 1-9 правильну відповідь позначайте тільки так: 

У завданнях 10-12 відповідь записуйте тільки десятковим дробом, враховуючи положення коми, по одній цифрі в кожній клітинці.









загрузка...

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами. Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посилання на сайт, будьте вдячними ми затратили багато зусиль щоб привести інформацію у зручний вигляд.

© 2008-2019 Всі права на дизайн сайту належать С.Є.А.