ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ 2018 - ФІЗИКА КОМПЛЕКСНЕ ВИДАННЯ

Частина ІІ ПРИЙОМИ РОЗВЯЗУВАННЯ ТИПОВИХ ЗАДАЧ

ЕЛЕКТРОДИНАМІКА

1. ОСНОВИ ЕЛЕКТРОСТАТИКИ

1.3. Задачі на електроємність конденсатора, з'єднання конденсаторів, енергію електричного поля конденсатора (див. п. 1.4.2, 1.4.3, с. 91, 92)

1 .3 На рисунку наведено схему батареї плоских повітряних конденсаторів. Ємності конденсаторів відповідно дорівнюють 3 мкФ, 2 мкФ і 1 мкФ, ЕРС джерела струму — 100 В. Знайдіть на скільки (у скільки разів) зміниться енергія (ємність, заряд, ...) батареї конденсаторів, якщо...?

Рекомендації до розв'язання.

Під час розв'язання подібних задач по черзі слід знайти початкові та кінцеві характеристики батареї конденсаторів, зміну яких треба знайти.

Зверніть увагу насамперед на те, як з'єднані конденсатори, та знайдіть ємність батареї конденсаторів.

З'ясуйте, чи змінюється ємність батареї, і якщо змінюється, то чому і як.

Дізнайтеся, чи під'єднана батарея конденсаторів до джерела струму.

1.3.1. На рисунку наведено схему батареї плоских повітряних конденсаторів. Ємності конденсаторів відповідно дорівнюють 3 мкФ, 2 мкФ і 1 мкФ, ЕРС джерела струму — 100 В. Батарею від'єднали від джерела струму. Яка кількість теплоти (у міліджоулях) виділиться у колі, якщо пластини конденсатора 2 з'єднати провідною перемичкою?

Розв'язання

Конденсатори 1 і 2 з'єднані послідовно, тому

= + = + = С1,2 = = 1,2 (мкФ);

С1,2 = 1,2 ∙ 10-6 Ф.

Конденсатори 1 і 2 з'єднані паралельно конденсатору 3, тому початкова ємність батареї дорівнює:

С0 = С1,2 + С3 = 1,2 + 1 = 2,2 (мкФ); С0 = 2,2 ∙ 10-6 Ф.

Визначимо заряд на батареї конденсаторів, який не змінюється. За визначенням ємності:

C0 = ,

тому q0 = C0U0, тут С0 = 2,2 ∙ 10-6 Ф.

Рекомендації до розв'язання. Згадайте формули для визначення ємності батареї послідовно та паралельно з'єднаних конденсаторів:

= + ;

Спарал = С1 + С2.

Зверніть увагу: якщо батарея конденсаторів від'єднана від джерела струму, то заряд на ній на змінюється.

U0 = ℰ = 100 В, отже, q0 = 2,2 ∙ 10-6 ∙ 100 = 2,2 ∙ 10-4 (Кл).

Початкова енергія батареї конденсаторів дорівнює:

= 1,1 ∙ 10-2 (Дж);

W0 = 0,011 Дж = 11 мДж.

Якщо пластини конденсатора 2 з'єднати провідною перемичкою, то батарея конденсаторів матиме вигляд, як зображено на рисунку.

Конденсатори 1 і 3 з'єднані паралельно, тому нова ємність батареї дорівнює: С = С1 + С3= 3 + 1 = 4 (мкФ), C = 4 ∙ 10-6 Ф.

Енергія батареї конденсаторів дорівнює:

= 0,605 ∙ 10-2 (Дж), W =6,05 мДж.

Кількість теплоти, що виділиться унаслідок застосування перемички, дорівнює:

Q = W0 - W = 11 - 6,05 = 4,95 (мДж).

Відповідь: 4,95 мДж.

Конденсатор нездоланна перешкода для постійного струму, тому у колі (в ділянці кола) струму немає. Тобто напруга на батареї конденсаторів дорівнює напрузі на затискачах джерела струму (на ділянці кола).

Виділення певної кількості теплоти означає, що енергія батареї конденсаторів зменшується:

Q = W0 - W .

1.3.2. На рисунку наведено схему батареї плоских конденсаторів. Ємності конденсаторів відповідно дорівнюють 8 і 2 мкФ. У скільки разів зміниться напруженість електричного поля всередині конденсатора 2, якщо, не відмикаючи батарею від джерела струму, заповнити простір між його пластинами слюдою з діелектричною проникністю 6?

А

Б

В

Г

Зменшиться у 2 рази

Зменшиться в 6 разів

Збільшиться у 2 рази

Збільшиться в 6 разів

Розв'язання

Оскільки поле між пластинами конденсатора однорідне, то Е = . Відстань d між пластинами конденсатора не змінюється, тому

= , (1)

Знайдемо початкову напругу U02 на конденсаторі 2. Оскільки конденсатори 1 і 2 з'єднані послідовно і підключені до джерела струму, то:

1) їхня загальна ємність:

= + = + = С0 = = 1,6 (мкФ), С0 = 1,6 ∙ 10-6 Ф;

2) q02 = q01 = q0 = C0U0; U0 = ℰ, тому q02 = С0 ℰ .

Отже,

U02 = = = = 0,8ℰ. (2)

Після заповнення простору між пластинами конденсатора 2 діелектриком ємність конденсатора 2 збільшується:

С2 = 6С02 = 6 ∙ 2 = 12 (мкФ).

Знайдемо загальну ємність двох конденсаторів, заряд та напругу на пластинах конденсатора 2 після введення діелектрика:

1) = + = + = C = =4,8 (мкФ);

2) q2 = Q1 = Q = CU; U = U0 = ℰ q2 = Сℰ;

3) U2 = = = = 0,4ℰ.

Підставивши вирази (2) і (3) у формулу (1), маємо:

Отже, напруженість поля зменшиться у 2 рази. Відповідь: А.

Зверніть увагу: електричне поле між пластинами конденсатора однорідне, тому напруженість Е поля між пластинами конденсатора та напруга U на його пластинах зв'язані співвідношенням

U = Ed ,

де d — відстань між пластинами.

Якщо батарея конденсаторів підключена до джерела струму, то напруга на батареї не змінюється.

Якщо конденсатори з'єднані паралельно, то напруга на них однакова.

Якщо конденсатори з'єднані послідовно, то:

• загальна напруга на батареї конденсаторів дорівнює сумі напруг на кожному з них;

• заряди на пластинах конденсаторів однакові і дорівнюють загальному заряду батареї конденсаторів.

Задачі для самостійного розв'язання

1.3.3.* Плоский повітряний конденсатор відключено від акумулятора. Як зміниться напруженість електричного поля всередині конденсатора, якщо відстань між його пластинами збільшити у 6 разів?

А

Б

В

Г

Зменшиться у 3 рази

Зменшиться в 6 разів

Збільшиться у 3 рази

Збільшиться в 6 разів

Зверніть увагу: якщо конденсатор (батарею конденсаторів) відключено від джерела струму, то заряд на обкладках конденсатора не змінюється.

1.3.4.* Три конденсатори ємністю 10 мкФ, 10 мкФ і 20 мкФ були з'єднані в батарею за схемою, зображеною на рис. 1. Потім ті самі конденсатори з'єднали за схемою, зображеною на рис. 2. Визначте, як змінилася ємність батареї конденсаторів унаслідок такої зміни їхнього з'єднання.

А

Б

В

Г

Збільшилася у 2,5 разу

Збільшилася в 4 рази

Зменшилася у 2,5 разу

Зменшилася в 4 рази

Рис. 1

Рис. 2

1.3.5. На рисунку наведено схему батареї плоских конденсаторів. Ємності конденсаторів відповідно дорівнюють 4 і 6 мкФ, ЕРС джерела струму — 100 В. Визначте (у вольтах), на скільки збільшиться напруга на пластинах конденсатора 2, якщо спочатку батарею від'єднати від джерела струму, а потім площу перекриття пластин конденсатора 2 зменшити у 6 разів?

1.3.6. На рисунку наведено схему батареї плоских повітряних конденсаторів. Ємності конденсаторів відповідно дорівнюють 5 мкФ, 5 мкФ, 1,5 мкФ, ЕРС джерела струму — 100 В. Визначте (у міліджоулях), яку роботу слід виконати, якщо, не відключаючи батарею від джерела струму, зменшити відстань між пластинами конденсатора 3 вдвічі?

Зверніть увагу: виконання роботи означає, що енергія батареї конденсаторів збільшується:

A = W - W0.






Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити

Віртуальна читальня освітніх матеріалів для студентів, вчителів, учнів та батьків.

Наш сайт не претендує на авторство розміщених матеріалів. Ми тільки конвертуємо у зручний формат матеріали з мережі Інтернет які знаходяться у відкритому доступі та надіслані нашими відвідувачами.

Всі матеріали на сайті доступні за ліцензією Creative Commons Attribution-Sharealike 3.0 Unported CC BY-SA 3.0 та GNU Free Documentation License (GFDL)

Якщо ви являєтесь володарем авторського права на будь-який розміщений у нас матеріал і маєте намір видалити його зверніться для узгодження до адміністратора сайту.

Дозволяється копіювати матеріали з обов'язковим гіпертекстовим посиланням на сайт, будьте вдячними ми приклали багато зусиль щоб привести інформацію у зручний вигляд.

© 2007-2019 Всі права на дизайн сайту належать С.Є.А.