Підручник Математика 5 клас - О.С. Істер - Генеза 2018 рік
Розділ 1 НАТУРАЛЬНІ ЧИСЛА І ДІЇ З НИМИ. ГЕОМЕТРИЧНІ ФІГУРИ І ВЕЛИЧИНИ
§4. Віднімання натуральних чисел
Розглянемо задачу.
Задача 1. Пішохід за дві години пройшов 7 км. Скільки кілометрів він пройшов за другу годину, якщо за першу подолав 4 км?
У цій задачі число 7 є сумою числа 4 і невідомого числа: 4 + х = 7.
!Дія, за допомогою якої за відомою сумою і одним з доданків знаходять другий доданок, називається відніманням.
Оскільки 4 + х = 7, то шуканий доданок х дорівнює 7 - 4. Записують так: 7 - 4 = 3. Отже, за другу годину пішохід пройшов 3 км.
Число, від якого віднімають, називають зменшуваним, а число, яке віднімають, — від’ємником. Результат віднімання називають різницею.
Отже:
Додавання й віднімання — взаємно обернені дії. Тому віднімання завжди можна перевірити додаванням. 7 - 4 = 3. Перевірка: 3 + 4 = 7.
Оскільки а + 0 = а, то а - 0 = а і а - а = 0.
Різниця двох чисел показує, на скільки перше число більше за друге (або друге число менше від першого).
Віднімемо від числа 987 число 325. Для цього зменшуване і від’ємник розкладемо на розряди:
987 - 325 = (900 + 80 + 7) - (300 + 20 + 5).
Отже:
987 - 325 = (900 + 80 + 7) - (300 + 20 + 5) =
= (900 - 300) + (80 - 20) + (7 - 5) = 600 + 60 + 2 = 662.
Цим пояснюється віднімання натуральних чисел «стовпчиком»:
Розглянемо властивість віднімання суми від числа.
Задача 2. У класі 27 учнів. 12 з них займаються плаванням, а інших 7 — легкою атлетикою. Скільки учнів не займаються ані плаванням, ані легкою атлетикою?
Відповідь можна отримати різними способами:
1- й спосіб. 27 - (12 + 7) = 27 - 19 = 8;
2- й спосіб. (27 - 12) - 7 = 15 - 7 = 8;
3- й спосіб. (27 - 7) - 12 = 20 - 12 = 8.
!Щоб відняти суму від числа, можна від нього відняти один з доданків, а потім від результату відняти другий доданок.
У буквеному вигляді:
а - ( b + с) = (а - b) - с, або а - (b + с) = (а - с) - b
Розглянемо властивість віднімання числа від суми.
Задача 3. У ящику 7 білих кульок і 8 чорних. Учень узяв деякі 3 кульки. Скільки кульок залишилося в ящику? Відповідь можна отримати різними способами:
1-й спосіб. (7 + 8) - 3 = 12;
2-й спосіб. (7 - 3) + 8 = 12;
3-й спосіб. (8 - 3) + 7 = 12.
!Щоб відняти число від суми, можна відняти й/ого від одного з доданків і до результату додати другий доданок.
У буквеному вигляді:
(а + b) - с = (а - с) + b (якщо а > с або а = с),
або
(а + b) - с = (b - с) + а (якщо b > с або b = с)
Цими правилами зручно користуватися під час усних обчислень.
Приклади.
1) 225 - (125 + 37) = (225 - 125) - 37 = 100 - 37 = 73;
2) (432 + 729) - 232 = (432 - 232) + 729 = 200 + + 729 =929.
Яку дію називають відніманням? Яке число називають зменшуваним, а яке - від’ємником? Як називають результат віднімання? Як дізнатися, на скільки одне число більше за інше? Сформулюй властивість віднімання суми від числа. Сформулюй властивість віднімання числа від суми.
150. Прочитай приклади по-різному:
151. Виконай віднімання і зроби перевірку:
1) 381 064 - 27 569; 2) 7 350 002 - 607 381.
152. Виконай віднімання і зроби перевірку:
1) 705 963 - 87 379; 2) 500 013 - 402 692.
153. Виконай віднімання:
1) 10 412 342 - 5 312 473;
2) 3 503 765 284 - 1 370 495 397;
3) 1 000 000 000 - 382 049 547;
4) 5 132 472 319 - 4 997 998 999.
154. Виконай віднімання:
1) 5 321 492 - 1 275 384;
2) 5 006 444 311 - 2 227 535 422;
3) 10 417 001 - 5 342 592;
4) 7 000 000 000 - 456 678 891.
155. На скільки:
1) число 12 372 більше за число 7981;
2) число 342 512 менше від числа 457 891?
156. Зменш 5792 на 3983.
157. В одному мотку 129 м ниток для плетіння макраме, а в другому — на 27 м менше. Скільки ниток у двох мотках?
158. Гаррі Поттер набрав 12 очок у баскетбольному матчі, а Рон Візлі — на 3 очки менше. Скільки очок вони набрали разом?
159. Обчисли значення виразу:
1) а - 5792, якщо а = 8397; 10 000;
2) 35 492 - b, якщо b = 9001; 5993.
160. Том Сойєр і Гекльберрі Фінн виграли разом у лотерею 327 грн. Том виграв 159 грн. Хто з друзів виграв більше й на скільки?
161. З двох полів зібрали 1380 т зерна — пшениці й жита. Пшениці зібрали 657 т. Жита чи пшениці зібрали більше й на скільки?
162. Виконай перевірку прикладу 23 - 5 = 18. Чи виконуються такі правила:
1) Якщо від зменшуваного відняти різницю, то отримаємо від’ємник.
2) Якщо до різниці додати від’ємник, то отримаємо зменшуване.
163. Обчисли:
1) 4006 - 2197 + 875;
2) 80 205 - 12 336 - 17 884;
3) 5 342 542 + (3 735 507 - 2 013 973);
4) 18 473 982 - (10 547 311 - 8 142 891).
164. Обчисли:
1) 47 105 + 29 895 - 57 937;
2) 115 397 - 96 588 - 2389;
3) 705 312 999 - (472 382 515 + 43 180 397);
4) 472 515 392 + (13 839 572 - 8 457 342).
165. Обчисли (усно) найзручнішим способом:
1) 78 - (45 + 18); 2) 547 - (20 + 47);
3) 98 - 13 - 28; 4) (400 + 735) - 200;
5) (547 + 329) - 247; 6) 593 - 90.
166. Як зміниться різниця 1527 - 381, якщо:
1) зменшуване збільшити на 15;
2) зменшуване зменшити на 73;
3) від’ємник збільшити на 24;
4) від’ємник зменшити на 83?
167. Заповни таблицю.
Зменшуване |
Від’ємник |
Різниця |
4 273 517 |
2 311 549 |
|
497 857 |
257 381 |
|
3517219 |
417 591 |
168. 1) Власна швидкість катера — 27 км/год, а швидкість течії річки — 3 км/год. Знайди швидкість катера проти течії річки.
2) Швидкість катера за течією річки — 42 км/год, а швидкість течії річки — 2 км/год. Знайди швидкість катера проти течії річки.
169. Швидкість катера за течією — 25 км/год, а власна швидкість катера — 21 км/год. На скільки швидкість катера за течією більша за швидкість катера проти течії?
170. Постав у клітинки цифри так, щоб віднімання було виконано правильно:
171. Постав цифри у клітинки так, щоб віднімання було виконано правильно:
172. Мотузку завдовжки 5 м 16 см розрізали на три частини. Перша частина мала довжину 3 м 13 см, що на 2 м 23 см більше, ніж довжина другої частини. Знайди довжину третьої частини.
173. Альбом, зошит і ручка разом коштують 57 грн. Ручка коштує 13 грн 50 к., що на 4 грн 50 к. більше, ніж зошит. Скільки коштує альбом?
174. Три насоси викачали 115 л води з басейну. Першин і другий насоси разом викачали 72 л, а перший і третій разом — 67 л. Скільки літрів води викачав кожний насос окремо?
175. На трьох полицях разом 118 книжок. Відомо, що на першій і другій разом 79 книжок, а решта — на третій, причому на третій полиці на 2 книжки більше, ніж на другій. По скільки книжок на кожній із трьох полиць?
176. Знайди значення виразу х + у + z:
177. Магазин за 3 дні продав т кг бананів. За перший день продали 60 кг, а за другий — b кг. Скільки кілограмів бананів було продано за третій день? Склади буквений вираз і обчисли його значення, якщо m = 223, b = 83.
178. Протягом жовтня з баскетбольної секції пішло 7 учнів, а прийшло 12. Як змінилася кількість учнів у секції?
179. Знайди значення виразу, обираючи зручний порядок обчислення:
1) (7982 + 2001) - 4982; 2) (319 + 795) - 695;
3) 9372 - (1372 + 999); 4) 597 - (150 + 297).
180. Знайди значення виразу, обираючи зручний порядок обчислення:
1) (8957 + 5392) - 5957; 2) 14 582 - (5582 + 3500);
3) (18 397 + 13 152) - 8152; 4) 13 700 - (342 + 6700).
181. Використовуючи властивості віднімання, спрости вираз:
1) (93 + х) - 15; 2) (у + 327) - 100;
3) 59 - (m + 27); 4) 429 - (311 + k).
Розв’язання. 1) (93 + х) - 15 = (93 - 15) + х = 78 + х.
182. Використовуючи властивості віднімання, спрости вираз:
1) (37 + а) - 12; 2) (6 + 415) - 300;
3) 42 - (х + 13); 4) 517 - (412 + у).
183. Знайди різницю, якщо:
1) зменшуване дорівнює від’ємнику;
2) зменшуване на п’ять одиниць більше за від’ємник.
184. Перевір правильність рівності а - (b - с) = (а - b) + с, якщо а = 72, b = 33, с = 12.
185. Обчисли зручним способом, користуючись рівністю з попередньої вправи:
1) 589 - (189 - 30); 2) 7391 - (5291 - 42).
186. Перевір правильність рівності а + (b - с) = (а - с) + b, якщо а = 48, b = 37, с = 11.
187. Обчисли зручним способом, користуючись рівністю з попередньої вправи:
1) 431 + (527 - 331); 2) 1278 + (352 - 178).
188. Як зміниться різниця, якщо.
1) зменшуване збільшити на 5;
2) зменшуване зменшити на 7;
3) від’ємник збільшити на 2;
4) від’ємник зменшити на 4?
Розв’язання. 1) Розглянемо різницю а - b. Якщо зменшуване збільшити на 5, то маємо (а + 5) - b = (а - b) + 5, тобто різниця збільшиться на 5.
189. У фермерському господарстві число індиків більше за число курок на 297. Як змінилося це число, якщо:
1) купили 15 індиків;
2) продали 18 індиків;
3) купили 23 курки;
4) продали 17 курок;
5) купили 18 індиків і 18 курок;
6) продали 17 індиків і 12 курок?
190. На зупинці з вагона метро вийшло 15 пасажирів, а ввійшло 23. На другій зупинці вийшло 17 пасажирів, а ввійшло 12. Скільки пасажирів було у вагоні метро до першої зупинки, якщо після другої зупинки їх стало 68?
191. Постав замість зірочок знак «+» чи «-» так, щоб виконувалася рівність:
1) 120 * 50 * 70 * 30 * 100 = 170;
2) 150 * 30 * 20 * 60 * 10 = 170.
192. Постав замість зірочок знак «+» чи «-», щоб виконувалася рівність 54 * (32 * 17) * (43 * 11) = 37.
193. Як зміниться різниця, якщо зменшуване:
1) збільшити на 7, а від’ємник збільшити на 2;
2) збільшити на 3, а від’ємник зменшити на 1;
3) зменшити на 5, а від’ємник зменшити на 2;
4) зменшити на 8, а від’ємник збільшити на 4?
Розв’язання. 4) Розглянемо різницю а - b. Якщо зменшуване зменшити на 8, а від’ємник збільшити на 4, то (а - 8) - (b + 4) = ((а - 8) - 4) - b = (а - (8 + 4 )) - b = (а - 12) - b = (а - b) - 12.
Отже, різниця зменшиться на 12.
Перевір свою компетентність!
194. Відстань між Києвом та Одесою 480 км. З цих міст назустріч один одному виїхали два автобуси. Яка відстань буде між ними, коли один автобус проїде 217 км, а другий — на 5 км більше?
195. Заповни таблицю результатів змагань зі стрільби та визнач місце кожного учасника, якщо а = 6.
Учасники змагань |
Вираз |
Очки |
Місце |
Василь |
9а - 7 |
47 |
|
Михайло |
95 - 10а |
||
Олександр |
8 а + 1 |
||
Ігор |
5 а + 15 |
||
Віталій |
88 - 8a |
196. Обчисли та порівняй (>, =, <).
197. В одній родині пошкоджено водопровідний кран. За 1 с з нього капає дві краплі води, а за 12 хв набігає повна склянка води. Скільки води втрачається за добу? За місяць, у якому 30 днів? (Вважати, що місткість 5 склянок води становить 1 л). Що потрібно зробити, щоб уникнути цих витрат?
Домашня самостійна робота № 1
1. Запиши цифрами число 7 мільйонів 12 тисяч 4.
A) 7 120 004; Б) 7 12 004;
B) 7 012 004; Г) 7 012 040.
2. Яка із запропонованих нерівностей правильна?
A) 4132 > 4123; Б) 4143 < 4134;
B) 5017 > 5107; Г) 9541 < 9451.
3. Знайди суму 37142 + 92 539.
А) 129 671; Б) 119 671; В) 129 681; Г) 119 671.
4. Яку з наведених цифр можна поставити замість зірочки у запис 37*8 < 3739, щоб утворилася правильна нерівність?
А) 3; Б) 5; В) 4; Г) 2.
5. Обчисли найзручнішим способом
456 + 3012 + 2044.
А) 6512; Б) 5512; В) 5412; Г) 5500.
6. В одній цистерні 52 л бензину, а в другій — на 18 л менше. Скільки літрів бензину у двох цистернах разом?
А) 96 л; Б) 122 л; В) 76 л; Г) 86 л.
7. Запиши число, яке на 4 менше від найменшого п’ятицифрового числа.
А) 99 995; Б) 9996; В) 10 004; Г) 9997.
8. Скільки є натуральних чисел, замінивши якими букву а, отримаємо правильну подвійну нерівність 417 < а < 428?
А) 9; Б) 10; В) 11; Г) безліч.
9. Як зміниться різниця 5781 - 319, якщо від’ємник збільшити на 18?
A) зменшиться на 18; Б) збільшиться на 18;
B) не зміниться; Г) зменшиться на 36.
10. Котигорошко записав кілька послідовних натуральних чисел у порядку зростання. Число 36 стоїть п’ятим, якщо рахувати як з одного, так і з другого боку. Якою є різниця між найбільшим і найменшим із записаних чисел?
А) 9; Б) 7; В) 8; Г) 10.
11. Знайдіть суму найбільшого і найменшого трицифрових чисел, записаних за допомогою цифр 1, 4, 5, якщо цифри в кожному із чисел не повторюються.
А) 686; Б) 695; В) 596; Г) 560.
12. Сума деяких двох натуральних чисел дорівнює 631. Якого найбільшого значення може досягати менше із цих чисел?
А) 310; Б) 316; В) 314; Г) 315.
Завдання для перевірки знань № 1 (§1-§4)
1. Порівняй числа:
1) 431 002 і 429 798; 2) 12 311 015 і 12 311 019.
2. Виконай додавання: 7 382 954 + 8 947 527.
3. Виконай віднімання: 13 152 973 - 9 189 858.
4. Порівняй:
1) 8000 г і 8 кг; 2) 7 км і 6993 м.
5. Виконай додавання, обираючи зручний порядок дій:
1) (473 + 152) + 527; 2) 538 + 263 + 212 + 37.
6. У першому ящику 57 кг картоплі, а в другому — на 12 кг менше. Скільки кілограмів картоплі у двох ящиках разом?
7. Яке найбільше і яке найменше чотирицифрові числа можна написати, використовуючи по одному разу цифри 5, 7, 0 і З?
8. Обчисли значення виразу, обираючи зручний порядок дій:
1) (4897 + 7321) - 2897; 2) 9795 - (3002 + 4795).
9. У числах кілька цифр замінено на зірочки. Порівняй ці числа:
1) 43*** і 47***; 2) **99 і 11***; 3) 94** і *398.
Додаткові завдання1
10. Знайди закономірність і продовлс ряд чисел (запиши три наступних числа ряду):
1) 3259, 3262, 3265, 3268, 3271;
2) 4215, 4212, 4214, 4211, 4213.
11. Встав замість зірочки знаки «+» і «—» так, щоб виконувалася рівність:
115 * 25 * 35 * 45 * 70 * = 150.