Підручник Геометрія з поглибленим вивченням математики 9 клас - А. Г. Мерзляк - Гімназія 2017 рік
§2 РОЗВ'ЯЗУВАННЯ ТРИКУТНИКІВ
У цьому параграфі ви дізнаєтесь, що являють собою синус, косинус, тангенс і котангенс кута а, де 0° ≤ а ≤ 180°.
Ви навчитеся за двома сторонами трикутника та кутом між ними знаходити третю сторону, а також за стороною та двома прилеглими до неї кутами знаходити дві інші сторони трикутника. у 8 класі ви навчилися розв'язувати прямокутні трикутники. Вивчивши матеріал цього параграфа, ви зможете розв'язувати будь-які трикутники.
Ви дізнаєтеся про нові формули, за допомогою яких можна знаходити площу трикутника.
2. Синус, косинус, тангенс і котангенс кута від 0° до 180°
Поняття синуса, косинуса, тангенса й котангенса гострого кута вам відомі з курсу геометрії 8 класу. Розширимо ці поняття для довільного кута а, де 0° ≤ а ≤ 180°.
У верхній півплощині координатної площини розглянемо півколо із центром у початку координат, радіус якого дорівнює 1 (рис. 2.1). Таке півколо називають одиничним.

Рис. 2.1
Будемо говорити, що куту а (0° ≤ а ≤ 180°) відповідає точка M одиничного півкола, якщо ∠MOA = а, де точки O і A мають відповідно координати (0; 0) і (1; 0) (рис. 2.1). Наприклад, на рисунку 2.1 куту, який дорівнює 90°, відповідає точка C; куту, який дорівнює 180°, — точка B; куту, який дорівнює 0°, — точка A.
Нехай a — гострий кут. Йому відповідає деяка точка M (x; у) дуги AC одиничного півкола (рис. 2.2). У прямокутному трикутнику OMN маємо:

Оскільки OM = 1, ON = x, MN = у, то
cos a = x, sin a = y.
Отже, косинус і синус гострого кута a — це відповідно абсциса й ордината точки M одиничного півкола, яка відповідає куту a.

Рис. 2.2

Рис. 2.3
Отриманий результат підказує, як означити синус і косинус довільного кута a, де 0° ≤ a ≤ 180°.
Означення. Косинусом і синусом кута a (0° ≤ a ≤ 180°) називають відповідно абсцису й ординату точки M одиничного півкола, яка відповідає куту a (рис. 2.3).
Користуючись цим означенням, можна, наприклад, установити, що sin 0° = 0, cos 0° = 1, sin 90° = 1, cos 90° = 0, sin 180° = 0, cos 180° = -1.
Якщо M (x; y) — довільна точка одиничного півкола, то -1 ≤ x ≤ 1 і 0 ≤ y ≤ І. Отже, для будь-якого кута a, де 0° ≤ a ≤ 180°, маємо:
0 ≤ sin a ≤ 1,
-1 ≤ cos a ≤ 1.
Якщо a — тупий кут, то абсциса точки, що відповідає цьому куту, є від’ємною. Отже, косинус тупого кута є від’ємним числом. Справедливе й таке твердження: якщо cos a < 0, то a — тупий або розгорнутий кут.
Із курсу геометрії 8 класу ви знаєте, що для будь-якого гострого кута а виконуються рівності:
sin (90° - a) = cos a,
cos (90° - a) = sin a
Ці формули залишаються справедливими також для a = 0° і для a = 90° (переконайтеся в цьому самостійно).
Нехай кутам a і 180° - a, де a ≠ 0°, a ≠ 90° і a ≠ 180°, відповідають точки M (x1; у1) і N (x2; y2) одиничного півкола (рис. 2.4).

Рис. 2.4
Прямокутні трикутники OMM1 і ONN1 рівні за гіпотенузою та гострим кутом (OM = ON = 1, ∠MOM1 = ∠NON1 = a). Звідси y2 = y1 і x2 = -x1. Отже,
sin (180° - a) = sin a,
cos (180° - a) = -cos a
Переконайтеся самостійно, що ці рівності залишаються правильними для a = 0°, a = 90°, a = 180°.
Якщо a — гострий кут, то, як ви знаєте з курсу геометрії 8 класу, є справедливою тотожність, яку називають основною тригонометричною тотожністю:
sin2 a + cos2 a = 1
Ця рівність залишається правильною для a = 0°, a = 90°, a = 180° (переконайтеся в цьому самостійно).
Нехай a — тупий кут. Тоді кут 180° - a є гострим.
Маємо:
sin2 a + cos2 a = (sin (180° - a))2 + (-cos (180° - a))2 =
= sin2 (180° - a) + cos2 (180° - a) = 1.
Отже, рівність sin2 a + cos2 a = 1 виконується для всіх 0° ≤ a ≤ 180°.
Для того щоб порівнювати значення sin a і sin р, а також cos a і cos р, скористаємося такими наочно зрозумілими міркуваннями:
якщо 0° ≤ а < β ≤ 90°, то sin a < sin β (рис. 2.5);
якщо 90° ≤ а < β ≤ 180°, то sin a > sin β (рис. 2.6);
якщо 0° ≤ a < β ≤ 180°, то cos a > cos β (рис. 2.5, 2.6).

Рис. 2.5

Рис. 2.6
Означення. Тангенсом кута a, де 0° ≤ a ≤ 180° і a ≠ 90°, називають відношення 
тобто

Оскільки cos 90° = 0, то tg a не визначений для a = 90°.
Означення. Котангенсом кута a, де 0° < a < 180°, називають відношення 
тобто

Оскільки sin 0° = sin 180° = 0, то ctg a не визначений для a = 0° і a = 180°.
Очевидно, що кожному куту a (0° ≤ a ≤ 180°) відповідає єдина точка одиничного півкола. Отже, кожному куту a відповідає єдине число, яке є значенням синуса (косинуса, тангенса для a ≠ 90°, котангенса для a ≠ 0° і a ≠ 180°). Тому залежність значення синуса (косинуса, тангенса, котангенса) від величини кута є функціональною.
Функції f (a) = sin a, g (a) = cos a, h (a) = tg a, p (a) = ctg a, які відповідають цим функціональним залежностям, називають тригонометричними функціями кута a.
Задача 1. Доведіть, що tg (180° - a) = -tg a, ctg (180° - a) =-ctg a.
Розв’язання.


Задача 2. Знайдіть sin 120°, cos 120°, tg 120°, ctg 120°.
Розв’язання. Маємо: sin120° = sin(180°-60°) = sin 60° =
;
cos120° = cos (180° - 60°) = - cos 60° = -
;
tg 120° = tg (180° - 60°) = - tg 60° = -
.
ctg 120° = ctg (180° - 60°) = - ctg 60° = -
.
1. Яке півколо називають одиничним?
2. Що називають синусом кута a, де 0° ≤ a ≤ 180°?
3. Що називають косинусом кута a, де 0° < a < 180°?
4. У яких межах знаходяться значення sin a, якщо 0° ≤ a ≤ 180°?
5. У яких межах знаходяться значення cos a, якщо 0° ≤ a ≤ 180°?
6. Чому дорівнює sin (180° - a)? cos (180° - a)?
7. Як пов'язані між собою синус і косинус одного й того самого кута?
8. Що називають тангенсом кута a, де 0° ≤ a ≤ 180° і a ≠ 90°?
9. Що називають котангенсом кута a, де 0° ≤ a ≤ 180°?
ВПРАВИ
2.1. Чому дорівнює:
1) sin (180° - a), якщо sin a =
;
2) cos (180° - a), якщо cos a = 0,7;
3) tg (180° - a), якщо tg a = -5;
4) ctg (180° - a), якщо ctg a = -
?
2.2. Кути а і β суміжні, cos a = -
.
1) Знайдіть cos β.
2) Який із кутів а і β є гострим, а який — тупим?
2.3. Знайдіть значення виразу:

2.4. Обчисліть:
1) 4 cos 90° + 2 cos 180° - ctg 90°;
2) cos 0° - cos 180° + sin 90° + tg 180°.
2.5. Чому дорівнює синус кута, якщо його косинус дорівнює:
1) 1; 2) 0?
2.6. Чому дорівнює косинус кута, якщо його синус дорівнює:
1) 1; 2) 0?
2.7. Чому дорівнює тангенс кута, якщо його котангенс дорівнює:
1) 1; 2) -
?
2.8. Чому дорівнює котангенс кута, якщо його тангенс дорівнює:
1) -1; 2) 3?
2.9. Знайдіть sin 135°, cos 135°, tg 135°, ctg 135°.
2.10. Знайдіть sin 150°, cos 150°, tg 150°, ctg 150°.
2.11. Чи існує кут a, для якого:

2.12. Знайдіть:

2.13. Знайдіть:

2.14. Чи є правильним твердження (відповідь обґрунтуйте):
1) косинус гострого кута більший за косинус тупого кута;
2) існує тупий кут, синус і косинус якого рівні;
3) існує кут, синус і косинус якого дорівнюють нулю;
4) косинус кута трикутника може дорівнювати від’ємному числу;
5) синус кута трикутника може дорівнювати від’ємному числу;
6) косинус кута трикутника може дорівнювати нулю;
7) синус кута трикутника може дорівнювати нулю;
8) синуси суміжних кутів рівні;
9) косинуси нерівних суміжних кутів є протилежними числами;
10) якщо косинуси двох кутів рівні, то рівні й самі кути;
11) якщо синуси двох кутів рівні, то рівні й самі кути;
12) тангенс гострого кута більший за тангенс тупого кута;
13) тангенс гострого кута більший за котангенс тупого кута?
2.15. Порівняйте з нулем значення виразу:
1) sin 110° cos 140°;
2) sin 80° cos 100° cos 148°;
3) sin 128° cos2 130° tg 92°;
4) sin 70° cos 90° tg 104°;
5) ctg 100° sin 114° cos 11°;
6) cos 85° sin 171° ctg 87°.
2.16. Знайдіть значення виразу:
1) 2 sin 120° + 4 cos 150° - 2 tg 135°;
2) 2 cos2 120° - 8 sin2 150° + 3 cos 90° cos 162°;
3) cos 180° (sin 135° ctg 30° - cos 135°)2;
4) 2 sin2 30° + cos2 60° + sin2 45° + tg2 60° - tg2 120°.
2.17. Чому дорівнює значення виразу:
1) 2 sin 150° - 4 cos 120° + 2 ctg 135°;
2) sin 90° (tg 150° cos 135° + ctg 150° sin 135°)2?
2.18. Знайдіть значення виразу, не користуючись калькулятором:

2.19. Знайдіть значення виразу, не користуючись калькулятором:

2.20. Знайдіть суму квадратів синусів усіх кутів прямокутного трикутника.
2.21. Знайдіть суму квадратів косинусів усіх кутів прямокутного трикутника.
2.22. Порівняйте:

2.23. Порівняйте:

2.24. У трикутнику ABC відомо, що ∠B = 60°, точка O — центр вписаного кола. Чому дорівнює косинус кута AOC?
2.25. Точка O — центр кола, вписаного в трикутник ABC, cos ∠BOC = -
. Знайдіть кут A трикутника.
2.26. У непрямокутному трикутнику ABC відомо, що ∠B = 30°, точка H — ортоцентр. Чому дорівнює тангенс кута AHC?
2.27. Точка H — ортоцентр трикутника ABC. Відомо, що cos ∠AHC = -
. Знайдіть кут B трикутника.
2.28. Точка O — центр вписаного кола трикутника ABC. Відомо, що sin ∠AOC =
. Знайдіть кут B трикутника.
2.29. Точка H — ортоцентр трикутника ABC. Відомо, що sin ∠AHC =
. Знайдіть кут B трикутника.
2.30. Точка O — центр описаного кола трикутника ABC. Відомо, що sin ∠AOC =
. Знайдіть кут B трикутника.
2.31. Обчисліть ctg5° ctg15° ctg25° ∙ … ∙ ctg75° ctg85°.
2.32. Обчисліть tg10° tg 20° tg30° ∙ … ∙ tg70° tg80°.

































